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ABSTRACT. Biextensions associated to line bundles on abelian varieties allows to rein-
terpret the usual Weil, Tate, Ate, optimal Ate, ..., pairings as monodromy pairings. We
introduce a cubical arithmetic, derived from the canonical cubical torsor structure of these
line bundles, to obtain an efficient arithmetic of these biextensions.

This unifies and extends Miller’s standard algorithm to compute pairings along with
other algorithms like elliptic nets and theta functions, and allows to adapt these algorithms
to pairings on any model of abelian varieties with a polarisation ®p, as long as we have
an explicit theorem of the square for D.

In particular, we give explicit formulas for the arithmetic of the biextension (and cubical
torsor structure) associated to the divisor D = 2(0f) on an elliptic curve. We derive
very efficient pairing formulas on elliptic curves and Kummer lines. Notably for generic
pairings on Montgomery curves, our cubical biextension ladder algorithm to compute
pairings costs only 15M by bits, which as far as I know is faster than any pairing doubling
formula in the literature.

1. INTRODUCTION

Pairing based cryptography has been thoroughly optimised over the years, and the pairings
are set up via parameters and subgroups tailored for speed. For instance the Tate pairing
is restricted to G x G, and the embedding degree d is often chosen even to benefit from
denominator elimination, we have tools for Miller loop reduction like the Ate and optimal
Ate pairing on G, x G, and so on.

Nevertheless, pairings are important in other aspects than pairing based cryptography, in
which case we need to compute “generic pairings”. In particular, for “generic pairings”, we
cannot assume that denominator elimination is available, nor that our points P, Q € E[{]
are in specific eigenspaces of the Frobenius.

This is notably the case in isogeny based cryptography, where pairings are an important
tool. They are used to speed up smooth order DLPs on elliptic curves, generate canonical
basis, test the degree of an isogeny, compress messages and signatures, and so on. In these
examples the points P, Q are arbitrary points of {-torsion. We refer to [ ] for other
examples.

By contrast to pairing based cryptography, pairings are quite slow in the generic case,
usually much slower than a curve scalar multiplication. The best formulas I have been able to
find in the literature, in [ ], uses 10M + 95 for doubling, and 11.5M + 3S by addition.

1.1. Efficient generic pairings on Kummer lines. In this paper, we introduce a novel
algorithm, that is much faster for generic pairings, and is potentially interesting even in the
context of pairing based cryptography. We first give a general framework for any elliptic
curves and even abelian varieties (not necessarily principally polarised).
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Then we focus on the particular case of the Montgomery model. Montgomery elliptic
curves E, or more precisely their associated Kummer lines E/ + 1, have a very eflicient scalar
multiplication in the form of the Montgomery ladder, which costs 5SM + 4S5 + 1m, by bits.
Here we denote by M a multiplication on the base field, S a square, and 11 a multiplication by
acurve constant (which in the case of a Montgomery curve E : By? = x>+ Ax2+1 will be the
multiplication by (A + 2)/4). We recall that if P = (x(P),y(P)) = (X(P) : Y(P) : Z(P))
in affine (resp. projective) Weierstrass coordinates, its representation on the Kummer line is
x(P) (resp. (X(P) : Z(P))).

Due to their fast arithmetic (Mongomery curves are also birationally equivalent to twisted
Edwards curves, and Curve25519 is also a Montgomery curve), the Montgomery model
is usually used in isogeny based cryptography, which makes it a natural target for generic
pairing formulas.

For the Montgomery model, our pairing framework gives:

Theorem 1.1. Let E : By? = x3 + Ax? + 1 be an elliptic curve in Montgomery form over a
finite field ]Fq. Let £ be an integer such that py C IF'q, Pe E[E](IF'q), Qe E(IF'q). Letx =2if

Uis odd, and x = 1 if U is even.

Assume that we are given %, and the coordinates x(P), x(Q), x(P+ Q) and their inverses.
Then one can compute a projective representation of the non reduced Tate pairing (i.e., its
numerator and denominator) to the power x, et (P, Q)*, via a cubical biextension ladder
which costs 8M + 65 + 1my by bits.

A similar algorithm holds for the Weil pairing ey (P, Q)" when P, Q € E[{], using two
cubical biextension ladders rather than one; and also for the square of the Ate and optimal Ate
pairings.

Special cases include:

o When € = 2", or for self pairings when P = Q, the cubical biextension ladder costs
S5M + 4S + 1my by bits.

e For batch pairing computations e ((P, Q;), with the same base point P, after the first
pairing the following ones cost 3M + 25 by bits for the ladder.

We remark that our cubical biextension ladder cost is much more in line with the cost of
the Montgomery Kummer line ladder for scalar multiplication, and that it costs less than the
doubling formulas of [ ] (which needs to compute additions too!).

We also have a variant which uses a more standard double and add algorithm to compute a
biextension exponentiation, where each doubling costs 5M + 4S5 + 11, but with much more
expensive additions of 32M + 45 + 2m, (there is probably still some room for optimisation
for the addition). This only makes the double and add approach worthwhile compared to a
ladder when using a large enough window.

An implementation in Sage of Theorem 1.1 (along with many other algorithms) is available
at [ ].

Remark 1.2.

e If P,Q,P + Q are given by their projective (X(P) : Z(P)) coordinates on the
Kummer line, computing x(P) = X(P)/Z(P), x(Q), x(P + Q) and their inverses
only requires one inversion and several multiplications using Montgomery’s batch
inversion algorithm.

e If we are only given x(P), x(Q) but not x(P + Q), we can only recover the sym-
metrised pairings e(P, Q) + e(P, Q)~L. This is standard, see [ ] for elliptic
curves, [ ] for abelian varieties, and also Section 4.6.
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e If E is given by a twisted Edwards model, there is a birational map to a Montgomery
curve (which by [ ] is particularly simple at the level of the Kummer lines), so
we can apply Theorem 1.1.

e During the execution of the standard Miller algorithm for pairings, intermediate
zeroes and poles are introduced, which can result in undefined values. Standard
solutions are to switch the evaluation point (this does not pose a problem in pairing
based cryptography where we have a lot of points, but can be a problem in number
theoretic applications when me might have none), or to use Taylor series expansion
along a uniformiser (see for instance [ , Lemma 3.5.3]). By contrast, our
cubical biextension ladder is complete, i.e., is always defined, aslongas P, Q, P+Q #
(0 : 1) (see Remark 5.2).

1.2. Overview of the algorithm: the practical point of view. The algorithm proceeds
as follows: given the x-only coordinates x(P), x(Q), x(P + Q), we can use an extended
Montgomery ladder to compute x(mP), x(mP + Q) for any m > 0; this costs one doubling
and two differential additions by bits.

In practice, to prevent a division at each step, we want to work with projective coordinates
(X(mP) : Z(mP)) rather than x(mP). Now in the computer, these projective coordinates
are represented by affine coordinates, X (mP), Z(mP), and so define a “affine point” mP =
(X (mP), Z(mP)) lying “above” P. We will see in Section 4.5 that mP is what we call a cubical
point, and the coordinates (X (mP), Z(mP)) is the affine lift representation of cubical points.
And the interesting thing is that there is a cubical arithmetic, which lift the projective
arithmetic coming from the addition law on E.

So in our pairing algorithm, we compute cubical points mP, mP + Q, using a variant
of the standard doubling and differential additions which are carefully tailored to give the
cubical arithmetic. We will call these variants the cubical or affine doubling and differential
additions, and the resulting ladder the cubical ladder or affine ladder.

Now we start with P = (x(P),1), 0 = (x(Q),1),P + Q = (x(P + Q), 1), and we can
use our cubical ladder to compute {%PTQ, {P. Since the cubical arithmetic lift the elliptic
curve arithmetic, and £P = O, the point {P + Q differs from Q by some projective factor
Apq: (P+Q= )\LPQ and since Q is normalised we have Ap1 = Z(tP ¥ Q). Likewise, {P
lies above the neutral point O = (1 : 0) so is of the form P = (X(&P),0) = Ao,p(1,0).

An important result on cubical arithmetic is that the (square of) the non reduced Tate pair-
ing is precisely given by the monodromy e ((P, Q)? = A plAop = Z(BPTQ) /X (IP).

The fact that we compute the square of the usual Tate or Weil pairing is not really a
problem in practice when { is odd (after all for the reduced Tate pairing it suffices to adjust
the final exponentiation). But it loses one bit of information when £ is even. Luckily in this
case we can use the action of the theta group G(2(0g)) on cubical points to recover the usual
Tate and Weil pairing rather than their squares.

Now when we say that we need to carefully adjust the standard doubling and differential
additions formulas on the Montgomery Kummer line to get meaningful cubical arithmetic,
as Algorithms 5.4 and 5.5 shows the usual Montgomery ladder is actually already almost the
correct cubical ladder! The doubling Algorithm 5.4 is exactly the same. And a minor difference
in Algorithm 5.5 is an extra factor of 4, which does not matter for pairings (it does matter
for other applications of the cubical arithmetic, like the DLP monodromy leak). The major
difference is as follows: both algorithms compute X (R+S)X(R—S5), Z(R+S)Z(R—S) from
X(R),Z(R), X(S),Z(S),X(R - S),Z(R — S) using exactly the same formulas (up to this
factor 4). Now, the usual algorithm, which only cares about projective coordinates, compute
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(X(R+S):Z(R+85)) = (X(R+S)X(R—=S)Z(R—-S5),Z(R+ S)Z(R—-S)X(R-S5)).
For the cubical arithmetic, we really want to use (X(R + S)X(R - S)/X(R - S),Z(R +
S)Z(R—S)/Z(R —S), i.e. use two divisions rather than two multiplications. Luckily, during
the cubical ladder to compute {P, (P + Q, the base points R — S will be P, Q, or P + Q.
That’s why we need the inverses of x(P), x(Q), x(P + Q) in Theorem 1.1, which the usual
projective Montgomery ladder does not need; once these have been precomputed, the two
divisions by X (R — S) and Z(R — S) only become one multiplication by 1/x(R — S) (since
our cubical points P, 0, P + Q have been normalised to have Z = 1).

1.3. Overview of the algorithm: the conceptual point of view. Now we need to explain
where this cubical arithmetic which gives pairings come from. We have seen above that our
pairings were given by some kind of monodromy information. The correct framework for
these monodromy considerations is the concept of biextension.

Biextensions were introduced by Mumford in [ ], and their theory thoroughly
developed in [ , Exposés VII et VIII]. As mentioned above, biextensions provide the
correct theoretical framework to study pairings on abelian varieties and even abelian schemes,
and as explained by Grothendieck in [ ] allows to keep track of pairing informations
on a Néron model even when the special fiber degenerates to a non semi-abelian variety.
Notably, he uses biextensions to constructs a pairing between the connected components of
the special fiber of the Néron model of an abelian variety A and the one of its dual A. This
pairing is the key in his proof of the semi-stability theorem that an abelian variety always
admits a semi-abelian Néron model over a finite field extension.

Now, reading through the 179 pages of abstract cohomological diagram chasing argu-
ments of [ , Exposés VII et VIII] might make biextensions seem like a very abstract
theoretical concept, suitable to prove theorems but with no algorithmic applications. This
was the impression of the author until recently. Luckily, Stange in [ ; ] showed
the algorithmic applications of biextensions (in the guise of elliptic nets), and in [ ,
Theorem 17.1.1] she extends Grothendieck’s monodromy interpretation of the Weil-Cartier
pairing to the case of the Tate pairing.

And in fact, a biextension is something very concrete. Let us detail the case of the biexten-
sion X () associated to the canonical polarisation (Og) on an elliptic curve E. Let D = (Og),
a biextension element is a tuple (P, Q,gp o) € X 0p) where P,Q € Eand gp  is a function
with divisor Dp, 5 + Dy — Dp — D. Here Dp denotes the divisor (—P) — (0g) (so Dy = 0
and we will often drop it in the notations). The unusual convention on the signs will be
explained in Section 1.6. Modulo our non standard sign convention, the functions gp ; are
exactly like the functions yp ; we use in pairing based cryptography (which are usually
normalised at infinity).

There are two partial group laws %1, x, on the biextension, which can be used to compute
a product (P1,Q1,8p,,0,) * (P2,Q2,8p,,0,) whenever Q; = Q, for x; and whenever
Py = P, for x,. We refer to Equations (9) and (10) for the definitions. A surprising, but very
useful fact, is that the biextension X ) is symmetric, which means that x, = 1**; where
is the swapping of arguments.

Now in the context of the non reduced Tate pairing et ((P,Q), by [ ] its mon-
odromy interpretation via biextensions is as follows: take any rational biextension element
(P,Q,8p,o) above (P, Q) and compute the biextension exponentiation (P, Q,¢p o) b =
(QP, Q’gEP,Q)' Since (P = O, gep,Q has for divisor D€P+Q + DO — Dgp — DQ = 0sois

a constant. This constant is precisely er (P, Q), or more precisely its class in Fj/ IE';’E. In
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Section 3.4 we give a monodromy interpretation of the Ate and optimal Ate pairings; this
seems to be new.

To get efficient pairing formulas, we need an efficient representation of biextension el-
ements. The function ¢p ; is completely determined, via its divisor, from P and Q, up to
a constant; so is completely determined by its value at any base point Ry. We call this the
evaluation representation, and we will see that in Section 3.3 that the biextension exponenti-
ation in the evaluation representation is precisely Miller’s algorithm. This subsumes Miller’s
algorithm in terms of biextension arithmetic.

To go further, we introduce cubical points and the cubical representation of biextension
elements. A very informal way of describing the cubical representation, which will be made
more rigorous in Section 4.5 is as follows: let (mP,Q, ¢,,p o) = (P, Q,gP,Q)*T'm. The
function R = g,,,p o (R) has for divisor D,,,p, o + Dy — D,,,p — D5. We can decompose it
as a product of “cubical functions”

Z(mP + Q + R)Z(R)
ZmP+ R)Z(Q + R)

gmp,o(R) =

where the cubical functions R — Z(mP I?g +R),R - Z®R),R » ZmP¥R),R —
Z(QTR), are completely determined from choices of R,P¥R, QTR, D, Q and are “func-
tions” with divisors D,,,p, 5, Do, D,,p, and D, respectively. These divisors are not principal,
so these “functions” do not make sense on E, but they do make sense as cubical functions.

And a way to represent these cubical functions is via their “evaluation” at a base point R.
So we represent the biextension elements (P, Q, gp o) "™ by the cubical points

[mP ¥ Ry, Q+ Ro; Ry, mP + Q + Ry].

In practice, we will use Ry = O as our base point since it is the most convenient, and our
representation will be given by [n?f’, @; 0, mP + Q1.

Z(mP+Q)Z(0)
) "
more rigorously, since Of is a zero of order 1 of both sides, this becomes an equality after
dividing both sides by the same uniformiser).

So using cubical points, we have a way to split the functions g,,p  as quotients of cubical
functions, and a way to split the evaluation representation g,,p o (Rg) as a quotient of the
value of Z on cubical points (given by the evaluation of these cubical functions at R).
We formalize this concept of “cubical points” in Section 4; the interesting things as already
mentioned is that cubical points admits a cubical arithmetic (which is not defined everywhere,
nor is given by partial group laws).

This cubical arithmetic arises from the concept of cubical torsor structure, which is
developed in [ ]and [ , Chapitre 1]. In particular, Breen introduces in [ ]
the concept of symmetric biextension, and explains how a cubical torsor structure give
symmetric biextensions and conversely. For a biextension X, associated to a divisor D on an
abelian variety A with structure sheaf O4, and interpreting D as a line bundle L = O4 (D),
i.e. as a G, torsor for the Zariski (or étale or fppf) topology; the theorem of the square
Loy @ L = L, ® Ly, (where L, :=t;Land t, : A » A, P — a+ P is the translation by a)
already gives a squared structure. This squared structure induces a canonical cubical torsor
structure, i.e. isomorphisms L,y ® L7}, @ Ll @ Ll @ L, L, @ L@ L7 = Oy
satisfying various natural compatibility conditions; along with higher dimensional structure
(which we won’t need). This cubical torsor structure will be used for our cubical arithmetic, for
which we give explicit formulas, and we use these explicit formulas to recover in Theorem 4.8

The link with the previous evaluation representation is g,,p,o (0Op) =
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the fact from [ ; , Chapitre 1] that the cubical torsor structure determines the
symmetric biextension Xp,.

The story so far is: pairings can be interpreted as monodromy informations on biexten-
sions, this monodromy can be computed via biextension exponentiations, and cubical points
and their arithmetic provide a convenient way to compute the biextension arithmetic. This is
starting to get a bit long winded, and we still need an efficient way to describe our cubical
points and their arithmetic. Thanksfully, that’s the last step we will need for Theorem 1.1.
We will see in Section 4 that a cubical point P is abstractly a rigidification of our G,,-torsor
(i.e. line bundle) L at P. Going back to the case L = O (2(0g)) of Kummer lines, we have
the two sections X, Z € I'(2(0g)), which give the projective coordinates (X(P) : Z(P))
of a point P € E. We remark that the function x = X/Z is a well defined function on
the elliptic curve. But via our rigidification P : L(P) — Og(P) = k(P) we can interpret
Do X, P o Z as elements of k(P) and so define their “values” at P, which we will denote by
X(P), Z(P) (since the values depend on the choice of rigidification P above P; changing this
rigidification PtoA-P changes the coordinates by a factor A: X (A - P) = A - X(P)). We call
this the affine lift representation of our cubical point P, indeed since x = X/Z is a genuine
function on E, we have X(P)/Z(P) = x(P), so (X(P),Z(P)) is a point in AZ above the
point (X(P) : Z(P)) € PL.

Now as an aside, for our cubical representation, since we use the level 2 coordinates
X,Z € T'(2(0g)), this means that we will be working with the biextension X200, rather
than X ), hence compute the Tate and Weil pairings associated with the divisor 2(0), This
is where the square factor in Theorem 1.1 comes from, compared to the usual Tate and Weil
pairings associated to (Og). We saw in Section 1.2 that we can still compute the standard
Tate and Weil pairing when € is even even while working on Xj ), by using the natural
action of the theta group G(2(0g)) on it.

1.4. Comparison with elliptic nets and the theta coordinates algorithm. We saw in
Section 1.3 that Miller’s algorithm is just a way to compute the arithmetic in biextensions via
the evaluation representation.

Elliptic nets [ ; ] give an alternative approach to compute pairings, and yet
another approach is given through theta functions [ ; ]. It was already remarked in
[ ] that these two approaches are very similar, and how theta functions give “abelian
varieties nets”

We can go further: both approaches are a way to represent cubical points and their
arithmetic. In fact the theta function approach is precisely the affine lift representation of
cubical points as defined in Section 1.3, when we use as coordinates a basis 6y, ..., 8, of
theta functions.

For the elliptic nets approach, the idea is to work with the biextension X(j_) and so
cubical points for (Og). We only have (up to a scalar) one global section Z; € I'(0g) (such
that in our notations of Section 1.3, Z = Z%), but we can still define the value Z; (P) ofa
cubical point. Given cubical points P, Q, P + Q, the cubical arithmetic allows to compute all
mPTnQ m,n € Z, and the associated elliptic net is then Z, (mPTnQ).

The main drawback of elliptic nets is that Z; (P) is not enough to determine P. It is
actually quite remarkable though, that thanks to the recurrence relation of elliptic nets, the
dataof Z; (mPTnQ) for small values of m, 11 is enough to recover all of them. In Section 4.8,
we introduce another representation of cubical points P for (Of), which is simply given by
(P,Z4 (P)). This is enough to completely determine P (obviously), and also p except when
P = 0 because in this case Z1 (0g) = 0. We refer to Section 4.8.5 for more details.
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In Section 4.8.4, we look at cubical points for 2(0g). We could represent a cubical point
P by (P, X(P), Z(P)), but since (X (P), Z(P)) is already enough to recover (X(P) : Z(P)),
and since (X(P) : Z(P)) completely determines +P, the values X (P), Z(P) are almost
enough to determine D.AlsowhenP =0 > X ((N)E) ) # Ohence X, Z are enough to determine
Og. As explained in Section 1.2, this is the representation used for Theorem 1.1.

1.5. Applications. The main goal of the paper is to give efficient generic pairing formulas.
But the tools we develop for this, notably the efficient arithmetic of the biextension and
cubical points associated to the divisor 2(0g) on an elliptic curve, have applications beyond
this goal.

In Section 6 we discuss some further applications. In particular, while pairings only use
the biextension arithmetic, the monodromy leak application of Section 6.4 really needs the
full power of the refined cubical arithmetic.

1.6. Conventions and notations. I had two choices when writing this paper. First, develop
the general theory of cubical arithmetic for abelian varieties (or even abelian schemes), and
then specialize only at the end to elliptic curves. But I feared this would seem too abstract.

The second approach would have been to restrict to elliptic curves only and develop
the biextension and cubical arithmetic associated to the divisors (Og) and 2(0g). But for
the applications mentioned in Section 1.5, I really wanted to develop the general theory of
cubical arithmetic over an abelian variety. Besides, isogeny based cryptography uses higher
dimensional isogenies more and more, so deriving efficient formulas in any dimension
seemed worthwhile.

In the end, I opted for a mix of the two approaches: either first describing the general
case and then specializing to elliptic curves, or only detailing the case of elliptic curves and
then quickly indicating the generalisation to abelian varieties (or let the reader work them
out). This comes at a cost of some redundancy in the exposition, but I hope it will make the
exposition more accessible.

I also tried to prove (almost) all statements using the explicit formulas given in this paper,
rather than resorting to abstract proofs. Notably, I give explicit formula based proofs that
the biextension Weil and Tate pairings are the standard Weil and Tate pairings, and that the
cubical arithmetic induces the biextension arithmetic.

One particular conundrum I had in the exposition is the following. On abelian varieties, it
is much more convenient to use the language of line bundles .L than the language of divisors
D. This is because we are almost always only interested in the isomorphism class of .C, and it
is much easier to work with line bundles up to isomorphisms than to work with divisors up
to linear equivalences.

On the other hand, in the case of elliptic curves, divisors have a very convenient represen-
tation as a (formal) sum of points (we don’t have such convenient representations for abelian
varieties). Since pairings on elliptic curves are my main application, I made the choice to
work (as much as possible) with divisors.

A side effect is that I need different sign conventions than usual. Indeed, given a line bundle
L on an abelian variety A, the polarisation associated to Lis®; : A —» A, P = t5L® L7,
where tp is the translation by P. If .L is induced by a divisor D, we can rewrite ® ; as
Op: A > AP tpD — D = t_pD — D. In particular, the canonical polarisation
QJ(OE) associated to E on an elliptic curve is P — (—P) — (Og). Notice the sign change
compared to the usual identification of E and E! But the one we use in this article is really the
correct one according to [ , Example 2.5]. To mitigate this, we introduce the following
notation: Dp := ®(P) = t};,D — D. This notation has the convenient advantage that a cycle



8 DAMIEN ROBERT

Z = ) n;(P;) on an abelian variety is mapped through ®p, to the divisor ) 1;Dp, (we also
have D = 0), so we can use a cycle notation for both elliptic curves and abelian varieties.

An apology: I gave up on using the language of divisors in Section 4 to define cubical
points. Indeed a cubical point is a rigidification of the line bundle .L at P. This can be
rephrased in terms of a choice of a non zero local section evaluated at P, which can also be
described using the language of divisors, but the formalism of rigidifications is much more
practical, so I switched languages.

1.7. Genesis and thanks. The starting point of this research project was the wonderful
paper [ ]. In this paper, the authors use self pairings to find weak instances of class
group action isogeny based cryptography.

In a nutshell: assume that End(E) = Z[Va] is of discriminant A and « is totally imaginary.
Then the Weil-Cartier pairing associated to « is a non degenerate pairinge, : E[a] X E[&] —
ua. Furthermore, E[«] is cyclic (otherwise & would be divisible by an integer), and ¥ = @ =
—a so E[a] = E[&]. We obtain a non degenerate self pairing on the cyclic group E[«] which
can be used to recover torsion point informations for isogenies arising from the class group
action. (In [ ] the authors mainly use the “generalised a-Tate pairing” rather than
the a-Weil-Cartier pairing, but the overall approach is the same.)

An open question in this paper is how to compute this a-Weil-Cartier pairing and the
generalised a-Tate pairing, without going back to the usual Weil and Tate pairings (which
can be costly).

At that time, I knew that the arithmetic of theta groups naturally gave rise to the Weil and
Tate pairings, so I tried to extend [ ] by looking at theta group informations (not
necessarily coming from self pairings) preserved by class group isogenies. This is how I first
found the monodromy leak attack of Section 6.4, formulated at the time in term of canonical
lift of points of £-torsion in the theta group rather than in terms of cubical points. I only
found out afterwards that Lauter and Stange already had very similar ideas much earlier in
[ ], using the elliptic nets framework.

The key idea to rephrase the theta group approach in terms of biextensions (biextensions
are a convenient way to package families of theta groups) is due to Stange, who mentioned

during a discussion last year with the authors of [ ] and myself that elliptic nets
were a way to compute the biextension arithmetic, as she had proven in [ , Chapter 15].
Thanks to my work with David Lubicz in [ ; ] on computing pairings via theta

functions, I quickly realised that we could define “algebraic Riemann relations” (see Sec-
tion 4.1) which could also be used to compute the arithmetic of biextensions. Like our work
where we used affine lift of theta points, I could define affine lift of points for any models of
abelian varieties, use the algebraic Riemann relations to encode some sort of arithmetic on
these affine points, and represent biextension elements via these affine points. Working out
the formulas, I found out this generalised not only the theta coordinates approach but also the
elliptic nets approach (see Sections 1.4 and 4.8.5), so I knew I was on the right path. Indeed,
I finished the implementation of Theorem 1.1 in Sage in September 2023, and it did indeed
compute correctly the pairings (and much faster than Sage’s default implementation)! Trying
to make sense of the corresponding arithmetic of these affine lifts of projective points, I found
out, thanks to the work of [ ]and [ , Chapitre 1], that the correct notion was the
cubical torsor structure. Thanks to these firm existing theoretical foundations, extending the
work of [ ; ; ] to the general case of cubical points and cubical arithmetic was
straightforward.

In summary, this paper owes a lot to Stange and her PhD on elliptic nets, and obviously to
Lubicz through our collaboration on | ; ]. T also benefited from various discussions
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with Stange and the authors of | ], notably with Castryck and Vercauteren; and also
with Reijnders about [ | and with Guillevic on the current state of the art on pairing
based cryptography. Notably, I had not realised before | ] that generic pairings in isogeny
based cryptography were so slow; this motivated me to write Theorem 1.1 in the Montgomery
model.

Lastly, special thanks are due to Giacomo Pope who converted my toy Sage implementation
from [ ] to an efficient Rust implementation.

1.8. Outline. We first define the arithmetic of theta groups in Section 2, and how to recover
pairings from this arithmetic. We then move on to the theory of biextensions in Section 3,
which are a convenient way to package families of theta groups, we also reformulate pairings
in terms of monodromy on biextensions. We then introduce cubical points and the cubical
arithmetic as a refinement of the biextension arithmetic in Section 4, and we reframe yet
again pairings using cubical points. In Section 5 we specialize our formulas to the case of
pairings on Kummer lines, and prove Theorem 1.1. We briefly mention some applications in
Section 6 and give some perspectives in Section 7.

Warning: This paper was supposed to be written soon after my talk on this subject at the
Leuven Isogeny Days 4 in October 2023. However, this plan was sidetracked by the discovery
of the Clapotis algorithm. Meanwhile, several people have already started using the cubical
arithmetic formulas for faster pairing computations in isogeny based cryptography. This
current version is a preliminary version that I am publishing as a preprint paper because
a larger diffusion of the algorithm to the community is probably worth it. Beside I could
not resist the idea of publishing a preliminary version on April first. Beware that there are
probably many typos (I mean April fool’s!) still.

2. THETA GROUPS ARITHMETIC

We first introduce theta groups of elliptic curves in Section 2.1 and how to use the theta
group arithmetic to compute the usual Weil and Tate pairings associated to the divisor (Of)
on elliptic curves in Section 2.2. We briefly describe the general case of pairings on an abelian
variety with a polarisation ®p in Section 2.3. As mentioned in Section 1, this general case
of handling non necessarily principally polarised abelian varieties will be useful even in
the context of elliptic curves, because when { is even, we can use the theta group action of
G(2(0g)) to compute the standard Weil and Tate pairing rather than their square even while
working with the non principal polarisation 2(0).

2.1. Theta groups on elliptic curves. Biextensions are families of theta groups. We first
define theta groups and explain their link with pairings, before introducing biextensions.
For much more details on theta groups we refer to Mumford [ ; ].

Let k be a field and E/k be an elliptic curve, and D a divisor of degree n. There is an
associated polarisation ®p : E — E,P ~ t5D —D = t_pD — D =~ D — tpD, whose kernel
is Ker ®p = E[n]. (If n = 0, we make the convention that E[0] = E.) The theta group
G(D) is an extension of E[n] by G,,,, defined as follows: its elements are given by couples
(P,gp) € G(D) where P € Ker @, and gp is any function whose divisor is the principal
divisor tpD — D.

For simplicity, we will often refer to the element (P,gp) € G(D) simply by the function
gp- We will also say that (P,gp) € G(D) (k) if P € E(k) and gp is defined over k. In the
special case where P = Og, the divisor tEED — D s trivial, so g, is a constant.

The (non commutative) group law is given by

(1) (P,8p) - (Q,8q) = (P+Q,8p()8a(- + P)).
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There is also a canonical action of G(D) on I'(D), given for s € I'(D) (i.e. a function such
that divs + D > 0) by

(2) (P,gp) -s =gp(-)s(- + P).

Given two divisors Dy, D,, and an element P € 711 (G(D;)) N 715(G(D5)), where
1t : G(D) — E[degD] is the projection map (P, gp) — P, we have a morphism:

3)  (P,g1,p) € T (P), (P,&rp) € M3 (P) = (P,81,p82,p) € G(D1 + Dy).

Likewise, if D; ~ D,, we have an isomorphism G(D;) =~ G(D,). Namely, if « is any
function with divisor D, — D1, this isomorphism is given by

(4) (P,gp) € G(Dq) » (P, gp()a(- + P)/a()) € G(D,).

We remark that the isomorphism does not depend on the choice of «.
If c € E, we also have an isomorphism:

(5) (P,gp) € G(D) = (P, tzgp) € G(tZD).

Example 2.1. Let Dy = {(0f) for { € N*, then Ker &, = E[{]. An element (P,gp) €
G(Dy) above P € E[?] is a function f; p (not necessarily normalised) with divisor £(—P) —
£(0p).
This is (up to a change of sign in P) the usual Miller function involved in the Tate and
Weil pairing. Let us explain how to recover the Weil pairing in the context of the theta group
G(Dy).
Given another element (Q, g) = fi,0 € G(Dy), the failure of the commutativity of the
group law of G(Dy) is measured by the commutator [ (P, gp), (Q,80)] = (P,gp)(Q,80) (P,gp)_1 (Q,gQ)_l.

We compute (gp-80) (X) = f,p(X)f(,o(x+P) while (§5-8p) (X) = fi,o(X)fg,p(x+Q). We
) fi,p((X)—(x+Q)))
thus have gp- ¢ = Agp-gp withA = fE;Q((x)—(x+P)) ’

vention for a function f evaluated on a divisor D = )" n;(P;) of degree 0: f (D) = [ [ f(P)™.
We recover the usual formula for the Weil pairing eyy ¢ (up to a sign depending on the sign
convention), which is not surprising since Mumford proves in [ , p- 183] that the
commutator pairing is the Weil pairing.

for any x. Here we use the usual con-

2.2. Theta groups and pairings for elliptic curves. We will be mainly interested in the case
where D is a degree zero divisor. In this case, Ker & = E, the commutator pairing is trivial,
so G(D) is a commutative extension of E by G,,,.

Up to linear equivalence, we can assume that D is of the form D = Dg := @, (Q) =
t’é(OE) — (0p) = (—Q) — (0p) E := Pic*(E). The theta group G(Dg,) thus gives an
element of Ext! (E, G,,), which gives an explicit isomorphism E ~ Ext! (E,G,,»), DQ —
G(Dg). Using this isomorphism and the long exact sequence of cohomology, we obtain a
canonical isomorphism between Kerf, f : E; — E, an isogeny, and the Cartier dual of the
kernel Ker f of the dual isogeny. This isomorphism induces the usual Weil-Cartier pairing,
and the standard Weil pairing is the Weil-Cartier pairing associated with the polarisation
D0,y = P,y where @y : P> (=P) — (0g) ~ (Og) — (P) is the canonical principal
polarisation.

Remark 2.2. The formula for ® ., might seem to be the opposite of the usual isomorphism

taken for E =~ E, but is the correct one such that the pullback of the Poincare bundle gives
an ample line bundle (see [ , Example 2.5]). Since we want our arguments to apply “as
is” to abelian varieties, we will stick with this choice. Unfortunately, this means that our sign
convention on divisors will be the opposite of the usual ones taken in the pairing literature,
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for instance our function yp  will be the normalised (at infinity) function with divisor
(=P -Q) + (0g) — (=P) — (—Q). IfﬂplQ is the usual normalised function with divisor
(P) +(Q) = (P + Q) — (0g), we have pp 5 (R) = 1/pup o(—R).

We now explain how to recover the Weil and Tate pairing from our theta groups G(D(,).
If P € E, we will denote by gp 5 € G(D(y) an element in the theta group above P its divisor
function gp ( then also gives an element of G(Dp) above Q.

Now, given Py, P, € E and two functions gp, o,8p, 0 € G(Dg) above Py, P; respec-
tively, we have two possible group operations. The first one is given by the multiplication

© (P1,8p, @) (P28p, @) = (P1+ P2r8p,,00)8p,00 + P1))

in the theta group G(Dgy). The second one is to interpret (Q, gp, Q) asan element of G(D P,)
above Q and use Equation (3) to get an element (Q, gpr,,0()8p,,0()) above Q in the theta
group G(Dp, + Dp,). Now Dp, + Dp, = Dp_,p,,s0ifgp, p, is any function with divisor
Dp,+p,—Dp,—Dp, = (=P1=P3)+(0g)— (=P1)—(=P>) then by Equation (4) we have an
isomorphism G(Dp, + Dp,) = G(Dp,,p,), (Q,80) ~ (Q,8()gp,,p,- +Q)/gp, p,(*)).
Composing this isomorphism with the map above, we get an element (Q,g) € G(Dp, 4p,)
which induces an element (P + Py, 8p, +P,,0) € G(Dg). This gives us the second group
operation:

ngPz(—'*@)
gp,p, () )’

It is not obvious, but Equations (6) and (7) actually give the same group law:

)  (Pu.&p,Q) " (P2,8p, Q) = (Pl +P2,8p,0()8p,,0(")

Propositi0n2.3. (Pl,gpllQ)'l(Pz,gple) = (Pl’gpl,Q).(PZ’gpz,Q) = (P1+P2’gp1+P2,Q)'

Proof. This follows from the unicity of the biextension associated to the principal polarisation
D o, see Proposition 3.4 and Equation (11). O

Corollary 2.4. Let (P,gp o) € G(Dg). Then (P,gp o))" = (AP, gp o () o p((-+Q) — (),
where §y p is a function with divisor Dgp — {Dp = —8(=P) + (—€P) + (£ = 1)(0F).

Proof. By Proposition 2.3, we can use Equation (7) rather than Equation (6) when computing

(P,&p,0)". We obtain (P,gp 0)* = (IP,gp o () (8P pgp,2p *+* &P, t—1y(P)) ((- + Q) — ()
and we observe that (¢p pgp 2p *** &P, 1—1)(p)) has for divisor Dyp — {Dp. O

Corollary 2.5. IfP,Q € E[t], take any (P,gp,0) € G(Dp), and let Ap the constant such
that (P,gp,Q)e = (O, Ap) (alternatively, (P,gP’Q)Q-'—l = (P,Apgp,q))- Likewise, let A be
the constant such that (Q,gplQ)(Z = (0, AQ), where (Q,8pr,0) € G(Dg). Then (up to a
sign), the Weil pairing ey (P, Q) = Ap/Aq.

Assume that k = ]Fq, M C IE'q, andlet Q € E(]Fq), P e E[Q](IFq). Take any (P,gp o) €
G(DQ)(]P'q). Then (P,gplQ)(8 = (0g,Ap) where Ap is (up to a sign) the non reduced Tate

pairinger (P, Q). And (P,gp,Q)q_1 = (0g,Ap) (alternatively, (P,gplQ)”f) = (P,/\};gp,Q)),
where A}, is the reduced Tate pairing.

Proof. This follows from Corollary 2.4 and the usual formulas for the Tate and Weil pairing.
) p(+Q=())

Indeed, wehaveAp/Aq = §i12<~>“fzg<<~+1))—<~)) = ewo(P, QandAp = gp o () fop((-+

Q) — (+)) is equivalent to the non reduced Tate pairing f, p((- + Q) — (-)) since gp 5 is

assumed to be rational.
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For the last statement, we remark that (P, gp,Q)q_l = ((P, gP’Q)“) @=brt _ (0p, Ap) @D/t =
-1)/¢
(O, Ag "),
As a corollary, we see that Ap /A5 does not depends on the choice of gp (5, and likewise
for the class of Ap modulo ]F;’@. This can be directly seen as follows: changing ¢p o by Agp o
changes Ap to A‘Ap. O

Example 2.6 (Radical isogenies). Let P € E[{] of exact order {, and consider the isogeny
¢ : E - E' = E/(P). By descent theory [ , Proposition 1 p. 291], the divisor Dy
descends to E’ (i.e., there exists some rational degree 0 divisor D such that ¢*D" = D,)
if and only if the kernel Ker ¢ lifts to a rational subgroup in the theta group G(D,). Since
Ker ¢ is cyclic, this is equivalent to finding a rational element (P, gp) € G(D() above P of
order €.

Take gp € G(Dg) (k) an arbitrary rational element. We have (P, gp)(Z = (0g,Ap) where
Ap is the non reduced Tate pairing by Corollary 2.5. And (P, ]/lgp>€ = (0g, ‘ue/\p). It follows
that we can find a rational ¢p of order { if and only the non reduced Tate pairing er ((P, Q)
is an {-th power.

Now by definition of the dual isogeny ¢, we have $(D’) = ¢* (D). We have proved that
ot (D) contains a rational point D" if and only if the non reduced Tate pairing is an £-th
power. We recover (a special case of) the geometric interpretation from [ ] of the Tate
pairing as an étale torsor.

2.3. Theta groups and pairings for polarized abelian varieties. As explained in the intro-
duction, for simplicity we mainly work with elliptic curves, but we carefully state our results
such that they are easily adapted for any abelian varieties.

In this section, we briefly explain what happens for a general polarised abelian variety
(A, ©,), with ® 4 an ample divisor. Usually when working with abelian varieties, it is more
convenient to work with (isomorphisms classes of) line bundles than (linear equivalence
classes of) divisors, because unlike for elliptic curves divisor do not have a convenient
description. Here for the sake of uniformity we stick to divisors.

Fix any divisor D. There is a morphism associated to D, & : A —» A,P tpD — D,
it only depends on the algebraic equivalence class of D. We denote by A[D] its kernel. We
remark that @, is a polarisation when D = @4 is ample. If D = n®,4, with @, ample
giving a principal polarisation, then A[D] = A[n].

For simplicity, we will use the same notation to denote ®p(P) as the divisor Dp :=
tpD — D, and as an element of A = Pic’(A), i.e. as a linear equivalence class.

An element (P, gp) of the theta group G(D) is given by a point P € A[D] and a function
with divisor Dp := ®p(P), with group law given by Equation (1), and natural action on
sections given by Equation (2). Equations (3) and (4) also apply for abelian varieties.

2.3.1. Pairings on an abelian variety. We first introduce the Weil-Cartier pairing for an
abelian variety.

The reader can skip without harm the following paragraph. Let A/k be an abelian vari-
ety, and BG,,, = [Speck/G,,] be the classifying stack associated to G,,, (say for the fppf
topology). Then we define A/k to be Hom(A, BG,,,), where we require the morphisms to be
morphisms of Picard stacks. By definition of the classifying stack BG,,,, a morphism of stack
A - BG,, corresponds to a G,,-torsor, i.e. a line bundle .L. Requiring the morphism to be a
morphism of Picard stack imposes .L to be translation invariant (and rigidifies it). Since trans-
lation invariant line bundles are the same as the ones which are algebraically equivalent to 0,
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this gives an isomorphism Pic? (A) = A= Hom(A, BG,,). Now by general abstract non-
sense, we have an isomorphism Hom(A, BG,,)) = Ext!(A, G,,) as fppf sheafs. Iff : A - B
is a morphism of abelian varieties, K = Ker f, applying the derived functor R Hom(-, G,,)
to the exact sequence 0 - K - A — B — 0 gives a distinguished triangle in the derived cat-
egory, whose associated long exact sequence is 0 - Hom(B, G,,) - Hom(A, G,,,) —
Hom(K,G,,) — Ext'(B,G,,) — Ext'(A4,G,,) — --. Since Hom(A4,G,,) = 0 be-
cause A is proper and G, affine, and Ext'(B, G,,) — Ext'(A, G,,) is the dual isogeny
f via the identification above, we see that Ker f ~ Hom(K, G,,) is canonically isomor-
phic to the Cartier dual of K. This abstract isomorphism gives the Weil-Cartier pairing
e Kerf x Ker f = G,y,, via the identification above and the canonical pairing from Cartier
duality: K x Hom(K, G,,,) — G,,,. The standard Weil pairing is the Weil-Cartier pairing
applied to the isogeny [{].

We now recall the definition of the Weil and Tate pairing associated to the polarisa-
tion @ associated to an ample divisor D = @ = @ 4. For more details, we refer to
[ , Chapter 4; , Chapter 3; ] and the references there. The Weil pairing
ewo, @ A[LO] x A[lO@] - G, associated to P is the Cartier Weil pairing associ-
ated to the polarisation (g : A — A, and it is also the commutator pairing on the
theta group G({®). If (P, Q) € A[l], and eyy 4 is the usual Weil pairing on A[{] x Ale,
we have ey @ (P, Q) = ¢(P, ®g(Q)). Likewise, the Tate pairing et @ ¢ : A[{O](k) x
A(k)/(QCD@A(k)) — HY(k, Hy) is the Tate-Cartier pairing associated to the polarisation
(@g : A — A IfP € A[UI(K), er 0 (P, Pe(Q)) = e (Pe(P),Q), where ey  is the
standard Tate pairing associated to the isogeny [£] : A - A. If ® = m®q,and P,Q €
A[l] (resp. P € A[l](k)), we have ey @((P,Q) = ewl@l,g(P,Q)m, eroi(P,Q) =
ero (P, Q™

Formulas are as follows: let Zp,Zg be any degree 0 0-cycles equivalent to (P) — (0)
and (Q) — (0), and DZ,,/DZQ = ®g(Zp), Pe(Zg). Here we extend Pg to cycles by
additivity; by the theorem of the square their linear equivalence class only depends on P, Q.

Explicitly, if Z = ) n;(P;) is of degree 0, Dz := ) n;(tp D — D) = ) n;Dp, (and we
remark that Dp = D p)_(q,). The divisor Dy is principal if and only if s(Z) := }’ n;P; €
A[D], in which case we will write f, or fp_ a function with divisor D7. In particular,
DZ ~ DS(Z)'

We remark that if P € A[{©], then by definition {D, ~ {$g(P) is a principal divisor;
and by definition fy , is any function with this divisor. We will evaluate it on degree 0 cycles,
so the evaluation does not depends on the choice of f;z ,. We will also denote by f; p the
function associated to the divisor Dyp — {Dp associated to the cycle ((P) + (£ —1)0 — ¢(P).

We have

er,o00(P,Q) = fiz,(Zg) € k* /Kt
ifQ € A[{O®](k) and

ew,0,(P,Q) = fiz,(Zg) /fiz,(Zp) € Gy

if P,Q € A[{®]. (As the proof of Theorem 2.8 will show, we even have ey @ ((P,Q) =
fiz,(320) /f?,ZQ (t3Zp) aslong as we translate by the same point x € A.)

Finally we remark that the formulas also holds for any divisor D instead of an ample
divisor ®, but in this case we won’t have non degeneracy.

Remark 2.7. When we evaluate a function f at some cycle Z, it might happen that some of the
points P in the support of Z are zeroes or poles of . One way to still define the evaluation f (Z)
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is to fix a uniformiser 7tp at these points P, and to define f (P) as the value of (f/ 7112” ¢ )(P).
We sometimes call this the extended value. We will see in the monodromy interpretation of
pairings from Section 3 that our pairings will be obtained as a quotient of two functions f7, f>
which differ by a constant c. If we represent f1, f, by their extended value at P, as long as we
pick the same uniformizer 7tp both for f1, f,, this constant c will be correctly determined by
the extended value f; (P) /f» (P) even if P is a pole or zero of the f;.

2.3.2. Pairings via theta groups. We have seen in Section 2.2 that the map Dg = (—Q) —
(0p) € Pic’(E) — G(Dg) € Extl(E,Gm) gives an explicit isomorphism E := Pic’(E) ~
Ext!(E, G,,,). This extends to abelian varieties: the canonical isomorphismA ~ Ext! (A, G,
isgiven by D € Pic’(A) — G(D). We can thus extend Corollary 2.5 to abelian varieties.

We fix D a divisor, and recall that we denote by Dg the divisor ®5(Q) = t* D —D.
The theta group G(Dgy) is an abelian extension of A by G,,,, whose elements are glven by
(P,8p,o) with P € A and gp ¢ a function with divisor {,Dg — D = tj,+Q(D) +D —
tpD — t*QD =Dp,o—Dp—Dg. The group laws Equations (6) and (7) still hold for G(DQ),
and they are the same because Proposition 2.3 is also valid.

The only subtlety now is that if P € A[@] and we take (P,¢p o) € G(Dg), then
(P, gp,Q)'2 = ((P, g¢p,o) needs not be given by a constant function gyp o = Ap, because P
is not necessarily of {-torsion. However, {P € A[D], and we are able to use the action of
theta groups on sections.

Theorem 2.8. Let D be a divisor on an abelian variety A, Q € A, and D = ®p(Q). Let
(P,gp,Q) (S G(DQ), with P € A[ED]. Let ({P, gyp) € G(D) be any element above (P. Let
gﬂP,Q be such that (P,gp)e = (ﬂp,ggP,Q). Then 8€P,Q8€P((‘) - ( + Q)) isa COVlStai’lt/\p. If
Q € A[tD], the Weil pairing is (up to a sign) ey p o(P, Q) = Ap/Ag.

IfP € A[ED](k) and we take gp o5, §¢p rational, then the non reduced Tate pairing is given
by (up to asign) ey p o(P,Q) = A

We remark that (Q, gyp,0) € G(Dyp) and that g_ is a section of Dyp. By Equation (2),
(Q.8wp, Q) Szp

EP

the constant gyp 5¢p((-) — (- + Q)) is given by

Proof. First the function g¢p ¢ has for divisor Dyp, o — Dyp — D, while gyp has for divisor
Dyp, s0 gyp((+) — (- + Q)) has for divisor Dgp — (Dyp,o — D). Their multiplication has
trivial divisor, so is a constant.

Now the same proof as in Corollary 2.4 shows that gjp o = gle,’Qfg,p((- + Q) — (+)) with
f¢ p a function with divisor Dyp — {Dp. The function f; p/gyp has for divisor —¢Dp. We now
conclude as in Corollary 2.5, using the formulas for the Weil and Tate pairings associated to
D. O

As a consequence of the definitions and the proof of Theorem 2.8, we have the following
result which will be useful to get algorithms to compute the Ate and optimal Ate pairings.

Porism 2.9. Let (Pl’gpllQ) S G(DQ), (Pz,gple) S G(DQ), and (Pl + P2/8P1+P2,Q S
G(Dg) be their product. Let gp, p, be a function with divisor Dp, yp, — Dp, — Dp,. Then
gP1+P2 Q
8P1,Q8P5,Q (R).
Forany P,Q, let (P,gp o) € G(Dg), (P,gp)* = ({P,gp,q), and let f; p a function with
divisor Dyp — D p. Then the function f, p evaluated on the cycle (R + Q) — (R) is given by

gEPQ(R)
gPQ

8PP, evaluated on the cycle (R + Q) — (R) is given by ————=—
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And if P € A[tD], f_ip,(R+ Q) — (R)) = ggs (R)gp((R) — (R +Q)).

Remark 2.10. The reason we need to go through the trouble of explaining how to compute
the Weil and Tate pairing associated to some divisor D on the full A[{D] rather than just
A[€] is the following.

In Section 5, to compute pairings on Kummer lines, we will use the biextension and
cubical arithmetic associated to the divisor D = 2(0g) to compute ey (0, ¢, €T,2(0,),¢- On
the {-torsion, these are the square of the usual Weil and Tate pairings ey (o,.) v, €T, (0,),¢- This
is not a really a problem when { is odd, but this lose one bit of information when £ is even.

Instead, in this case we will write { = 2m, and use the fact that since m®; g, = (P,
then by the standard compatibility between pairings and isogenies, we have ey >(0,.),m =
eW,(0p),0 €T,2(0p),m = €T,(0p),- But E[m] is a strict subset of E[{] = E[m(2(0g))], so we
need the full generality of Theorem 2.8 to handle this case properly.

One needs to be careful with the Tate pairing, because of its arithmetic nature (by contrast
of the geometric nature of the Weil pairing). Let us assume that D = mD;, D a divisor
associated to a principal polarisation. In Theorem 2.8, for the Weil pairing, when P,Q €
A[ED] = A[tm], we correctly compute ey yp (P, Q) = ew yup, (P, Q) € py-

However, the non reduced Tate pairing e ¢ (P, Q) € k*/ k*!is computed in a smaller
group than et g,,p, (P, Q) € k* kA,

Looking at the formula from Theorem 2.8 and Porism 2.9, we see that to get a value
in k*/k*™ when using the divisor D, we need to keep track of g%,,Q, the monodromy

information A p is not enough (it only gives the information in k* /k**).

There is a special case where we can compute the correct value in k* /k*"" just from the
monodromy information. We have a map G(D1 o) — G(Dg) givenby gp 5 = gg,"é, where
the tensor product g?/"é is simply given by the function product: gg"é (x) = gp,o(0)". If,
when applying Theorem 2.8, our gp o € G(Dg) comes from the m-th tensor product of
a rational theta group element in G(D1 ), then the monodromy Ap naturally gives the
correct value of the Tate pairing k* /k*/%).

One last subtlety about the Tate pairing. For the Weil pairing e}y ¢p, replacing D by an
equivalent divisor D" still give the correct value eyy y,,,p,, not only on A[€] but even on
A[LD]. However, for the Tate pairing, for this to be the case, we need that D" = mD’l, with
D7 arational divisor. (In particular, the class of D] — D7 € Pic’(A) is a point of m-torsion.)

k(A)).

3. BIEXTENSIONS ARITHMETIC

We define biextensions in Section 3.1, and interpret the Weil and Tate pairing as mon-
odromy pairings in Section 3.2 (as already shown by Grothendieck and Stange respectively).
We explain how to recover Miller’s standard algorithm in terms of biextensions in Section 3.3,
and we give a monodromy interpretation of the Ate and optimal Ate pairings in Section 3.4.

3.1. Biextensions. Biextensions were introduced by Mumford in [ ]. For a complete
(but quite dry) reference, we refer to [ , Exposés VII et VIII]. Beware of some sign
errors in [ , pp- VIII 2.3.10], corrected in [ ,§5.1].

Let us first give an informal motivation for the notion of biextension. Pairings are bilinear
maps. When working with modules, it is much more convenient to interpret a bilinear
map B : Gy x G, — Gz as an element of Hom(G; ® G,, G3) than as an element of
Hom(Gq, Hom(G,, G3)). In other words: we want the decurryfication of the map G; —
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G, — G3,81 ~ B(g1,). A biextension is an analogue to a categorified decurryfication of
themap A — A= Hom(A, BG,,) = Ext'(A, G-

We first begin with some abstract definitions and results before moving to much more
concrete formulas. Given some abelian groups G, G,, G (over some topos), a biextension
X of G; x G, by Gj3 is an element of the topos with projection maps 711, 77, to G, G,
and an action of Gz on X, such that for all Py € Gy, Xp, := 711_1 (Pq) is an extension
of Gy by Gs, and for all P, € Gy, Xp, := 7T2_1(P2) is an extension of G; by Gz. This
defines two partial group structure x,, x; on X, and we further require that they satisfy
some “obvious compatibility relations”. The biextensions of (Gy, G,) by G3 form a category
BiEXt(Gl, Gz,’ G3)

More concretely, (working in the internal logic of the topos), an element x € X is said to
be above (g1,9») if 71;(x) = g;. All other elements x" above (g1, g») are of the form g5 - x
for a unique g3 € Gg: they form a torsor under G3. We will often use the notation x¢, o,
to say that x is above (g1, 7). The biextension structure induces two partial group law. The
first one Xe10n *1Ye!er = Zoi4¢l9n is valid whenever 77, (x) = 71, (y). The second one

Xe1.9o *2 Vg, ¢4 = Zg1,g2+gh 18 valid whenever 771 (x) = 717 (). The “obvious compatibility

relations” requires that given Xo1 .20 Xg1,85 Xgl 900 Xgt ghr We have

(8)  (Xg,,, *1 Xg,00) *2 (Xgy g1 %1 Xg, 01) = (Xgy 00 %2 Xgy 01) *¥1 (Xg1 0, *2 Xgr o)

For an description of the compatibility relations Equation (8) as a commutative diagram in
the external logic, see [ , VII Définition 2.1].

We summarize the main results of [ ] on biextensions (which we state for com-
pleteness, we won't need to use these results, but instead we will rely on down to earth
computations with explicit formulas). The functor BiExt is triadditive [ , VIL(2.6.1)],
covariant and cofibrant in G, and contravariant and fibrant in G{, G, [ , VI § 2], and
left exact in each argument [ , VII Proposition 3.7.6]. The category BiExt(Gq, G,; G3) is
astack [ , VIL § 2.8], whose homotopical invariants are given by BiExt(Gq, G,; G3)0 =
711 (BiExt(Gq, G5; G3)) = group of endomorphisms of any biextension X ~ Hom(G; ®
Gy, Gy) [ , VII'§ 2.5]; and furthermore BiExt(Gq, Gy; G3)1 = 71y (BiExt(Gq, Gy; G3)),
the set of isomorphism classes of biextensions, has a natural group structure defined in [ ,

VII § 2.5] and such that BiExt(Gq, G,; Gs)l o Extl(Gl é Gy, Gy) [ , VII (3.6.5)].
This isomorphism is the main result of [ , p- VII], and is used in [ , p. VIII] to
define a pairing associated to a biextension [ , VIII § 2]. This construction is extended
in [ , Theorem 17.1.1] to a Tate like pairing associated to a biextension.

Now we specialize these results to the case of abelian varieties (and then elliptic curves),
where G1, G, = A, B are abelian varieties, and G3 = G,,, is the multiplicative group. This is
the main case of interest of [ , pp- V11, VIII], and Grothendieck proves:

Theorem 3.1 (Grothendieck). Let A, B be abelian schemes. Then we have canonical isomor-
Pphisms (in the fppftopos) BiExt(A, B; G,,,) ~ BiRigidifiedTorsors(A, B; G,,,) ~ Correspondances(A, B) ~
Hom(A, B) =~ Hom(B, A).
Notably, given a morphism f : A — B, there is a unique biextension Xy associated to it, and
iff is an isogeny, the pairing associated to this biextension is the Weil-Cartier pairing ey.

Proof. The first statement is [ , VII Exemple 2.9.5 et Remarque 2.9.6], and the second
is [ , pp- VIII 2.3]. (It is stated to be the opposite of the Weil-Cartier pairing there, but
there was a sign mistake corrected in [ ,$5.1]) O



Fast pairings via biextensions and cubical arithmetic 17

Example 3.2. For instance, applying Theorem 3.1 to the identity morphism A — A, we
obtain the (birigidified) Poincaré line bundle and the Poincaré biextension.

Let A be an abelian variety and D be an ample divisor, and @, : A — A be the associated
polarisation. By Theorem 3.1, there is a unique biextension Xp, associated to ®p (which
uniquely depends on the polarisation, hence on the algebraic equivalence class of D). Since

A =~ A by biduality, X[, is a biextension of A x A by G,,,, and the corresponding birigidified
torsor is the pullback of the Poincaré line bundle by Id x®p,, and suitably rigidified along
Ax0and 0 x A.

Remark 3.3. The fact that the biextension pairing corresponds to the Weil-Cartier pairing
for abelian schemes follows from abstract diagram chasings in [ , pp- VIII 2.3]. A more
elementary proof for elliptic curves is given by Stange in [ , Theorem 17.1.2]; where it
is also proven that her Tate like pairing associated to a biextension is indeed the usual Tate
pairing for elliptic curves.

We will only need the unicity part of Theorem 3.1, and we will reprove below in Theo-
rem 3.11 that the biextension pairings are the Weil and Tate pairings.

We have a canonical isomorphism ¢ : BiExt(Gq, Gy; G3) = BiExt(G,, Gy; G3) which
consists in permuting the groups Gq, G, and the partial laws %4, *,. From the unicity part
of Theorem 3.1 it follows that iff : A — B is a morphism of abelian schemes and X the
associated biextension, we have 1(Xy) = Xz Now if we apply this to our polarisation ®p,

since it is autodual we obtain the following symmetry formula:

Proposition 3.4. Let A be an abelian variety, ®, : A — A a polarisation associated to an
ample divisor, and Xp the associated biextension of A x A by G,,,. Then Xp is symmetric: if
UXg, 0,) = t(x)a2 a denotes the same element seen above (a,,ay) rather than (aq,a,) (via
the isomorphism (ay1,a5) = (dp,41)), then X, , ¥1 Xg, p = LX) g0, *2 L(X)p 4,

Proof. The unicity argument above shows that the biextension laws are the same, up to a
global automorphism of biextension. But a biextension of abelian varieties by G,,, only has
trivial automorphisms. O

Remark 3.5. We even have the stronger statement that the biextension Xp, is symmetric

in the sense of Breen [ » § 1] (i.e. the symmetry above is compatible with the various
natural structures on the biextension), owing to the fact that (the line bundle associated to
D) is a cubical torsor (see [ ,S2]and [ , Chapitre 1, § 2, 3]). We will come back

to this in Section 4.

We are now ready to state explicit formulas for the biextension associated to a polarisation
@ on an abelian variety or an elliptic curve. Since the polarisation @, depends only on
the algebraic equivalence class of D (which for an elliptic curve is determined by deg D), for
an elliptic curve we can assume that D = D,, := n(0g).

Theorem 3.6. Let A be an abelian variety, D a divisor, and ®p, : A — A the associated
morphism. The biextension Xp of A x A by G, associated to D can be described as follows.

Its elements are tuples (P, Q, gp ) such that the function gp o on A has for divisor t,D o —
Dg = Dpyg—Dp—Dg, where Do = ®p(Q) = t*QD—D. The projection 7t : Xp — AxA
sends (P, Q, gp,0) to (P, Q). Wewill often drop (P, Q) when referring to a biextension element
8p,0 € Xp-

The divisors determine gp oy up to some invertible constants, so the preimage of 7t is indeed
a torsor under G,,,. Since the divisor is invariant under permutation by P, Q, the function
gp,Q can also be interpreted as an element t(g)Q p above (Q, P).
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Fixing Q, the group law on 715 1(Q) is equal to the group law (see Equations (1) and (6))
on the theta group G(Dg,). Fixing P, the group law on 7ty L(P) is equal to the one defined in
Equation (7) via Equations (3) and (4).

Explicitly we have, if g5, o, is any function with divisor Do .o, — Do, — Dg,:

(9) gpl,Q *1 gpz,Q = gP1+P2,Q = gpllQ(')gpz,Q(' + P]))
gQ ,Q (' + P)
(10) gP,Ql *5 gP,Q2 = gP,Q1+Q2 = gP’Ql(-)gP,QZ(-)ngjT.

And since Xp is a symmetric biextension:

(11) 8P,,Q *18P,,0 = &) g p, *218) g p,r

therefore we also have:

8p,p, (- +Q)
gp,,p,(+)

Proof. We saw in Section 2.3 that Equations (6) and (7) are still valid for an abelian variety.

We now check that the formulas in Theorem 3.6 define a structure of biextension on X,,.
By definition of the theta groups, the group structures on 7771 (P) and 715 1(Q) we use do
give extensions of A by G,,, as expected. An immediate computation also shows that the
partial laws x1, x, satisfy the compatibility relations of Equation (8), so X, is a biextension.

By Theorem 3.1, X[, is the biextension associated to some morphism ® : A — A. We
let to the reader the fun diagram chasing exercice to unravel the definitions of | ,
p. VII] and check that this @ is the polarisation @, we started with. (This diagram chasing
becomes easier when using the fact that the symmetric biextension X, is associated to the
explicit cubical structure on (the line bundle associated to) D, see [ ; , Chapitre 1].
Alternatively, it is shown in [ , VIIT § 2] that the pairing associated to the biextension
associated to P is the Weil pairing associated to P, and we will see in Theorem 3.11 that the
pairing associated to our Xp is @p, so P = Op.)

Equation (11) follows from Proposition 3.4. [l

8p,,Q *18P,,0 = 8P,+P,,0 = &P,,0()&P,,0(")

*1,—

Example 3.7. The inversion g, o Lis given by

1 8p,-p
8r,Q8p,—p(+ Q)
Remark 3.8. The biextension X, only depends on the polarisation ®p, so if D is ample only
on its algebraic equivalence class. Explicit isomorphisms can be given as follows: if D; ~ D,
and « is any function with divisor D, — D1, then thu/a has for divisor D; o — Dy ¢ hence
by Equation (4) the isomorphism is given by

8-pPQ =

aC+P+Qa()
a(-+PaC-+Q)
And if D, = tZDy, then D, o = t:D;  so by Equation (5) the isomorphism is:

(PIgP,Q) € G(Dl,Q) C }(D1 g (P/gP() ) (S G(DZ,Q) C XDZ'

(P’gP,Q) (S G(Dl,Q) C XD1 — (P, t;gp) (S G(Dz/Q) C XDZ'

3.2. Monodromy and pairings in biextensions. In Section 2, we saw how the exponentia-
tion in theta groups G(D(y) naturally gave rise to the Weil and Tate pairings on an elliptic
curve E or abelian variety, but we often had to juggle and switch between different theta
groups. In Section 3 and Theorem 3.6, we saw that the biextension X associated to the divisor
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(Og) is a convenient way to package all the theta groups G(D(,) together. We will now, fol-
lowing [ ,p- VIII] and | , Theorem 17.1.1], reinterpret the Weil and Tate pairings
as monodromy information on the biextension.

We first look at the case of an elliptic cruve E. The monodromy is as follows: let P € E[{]
and gp o € X be an element in the biextension associated to (0g), gp ¢ is a function with
divisor Dp,o — Dp —Dg = (=P — Q) + (0g) — (=P) — (—=Q)— by Theorem 3.6. Since
(P = O, we have gI*JlQE is an element above (0, Q), so a function with trivial divisor, so
a constant Ap. However, even through P is of order {, ¢p  need not be, so we may have
Ap # 1. We do have gFQem = AP, soifk = F, is a finite field and gp ¢ is rational, gp
is at most of order £(q — 1). We call Ap the monodromy associated to gp  (beware of the
notation, it also depends on Q).

We remark that changing ¢p o to ugp o, we have (1gp ) 18 = 42 p, so the class of Ap in

k* /K only depends on (P, Q), notongp . Also, ifk = F, and ¢ | q—l,)\g_l)/e = g;}(’g_l
is a {-th root of unity which does not depend on the choice of the (rational) ¢p ;; but only
on (P, Q).

As expected, this monodromy Ap will give pairings. We will also see in Section 3.4
how the Ate and optimal Ate pairings can also be interpreted as monodromy associated to
endomorphisms of the form ) ciﬂg.

In this article, we will need to be able to compute pairings associated with non principal
polarisation. Reusing the notations of Section 2.3, if D is a divisor on A, X[, the associated
biextension, and ¢p o € Xp where P € A[{D], we may not have {P = 0, so glajlQ may not
be a constant. We had the same problem for Theorem 2.8, and we will use the same solution.

Recall that a biextension element gp ; has for divisor Dp, o + Dy — Dp — D, which is
principal because it is associated to the cycle (P + Q) + (0) — (P) — (0) (with our conventions
Dy = 0 so we often omit it). But when P € A[D], Dp is already principal, so we may take
an associated function gp (we remark that (P, gp) is an element of the theta group G(D)).
The function gp (- + Q) /gp has for divisor Dp, 5 — Dp — Dy, so is an element of X, above

(P, Q). We remark that it does not depend on our choice of gp.

Lemma 3.9. FixQ € A. Welet (Xp o, *1) be the group of all biextension elements above
(P',Q) for some P'. The map sq : A[D] — Xp o, P = sp g = gp(- + Q)/gp is a group
morphism. This induces a group action P - gp: ;3 := S5 (P) %1 gp o of A[D] on Xp.

&p, (+Q) 8py (+Q)8p, (+P1+Q)  &py4p, (-+Q)
Proof ]gT *18p,(- +Q)gp, = — 8P18P2?-+P1) - 1<S’P12+P2 where gp, p, =
8p,8p, (++P1) isthe element of G(D) above Py +P; coming from the composition (Py, gp, )-
(Pz,gpz). O

By Theorem 3.6, the reformulation of Porism 2.9 in terms of biextension is:

Porism 3.10. Letgp o € Xp and let gip o = g;}’Q@. Then the function f, p evaluated on the
cycle (x + Q) — (x) is given by geép—'Q.

&r,0
If furthermore P € A[ED], f_ip,((R+ Q) — (R)) = (_e;)ﬂ(R).
P,Q

Theorem 3.11 (Monodromy pairings). Let Xp be the biextension associated to a divisor
D on an abelian variety A. Let (P,Q,¢p o) € Xp be a biextension element above (P, Q).

IfP € A[UD], welet gippo = g;lé is above (LP, Q). Furthermore, {P € A[D], so by
Lemma 3.9 there is a canonical biextension element ({P, Q, Sep,Q) above (LP, Q). The element
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8,0 *1 se*ﬁ(_gl = &wp,0 *1 5—p,0 = (—P) - gyp g is above (0, Q) so is a constant Ap. We
say that Ap is the (-monodromy associated to (P, Q,&p,0)-

If Q € A[UD], the Weil pairing is given (up to a sign) by: ey p (P, Q) = Ap/Ag

IfP € A[D](k), and (P,Q,8p o) € Xp(k), i.e. gp o is chosen to be rational, then the
non reduced Tate pairing is given by: er p (P, Q) = Ap.

Proof. This is a translation of Theorem 2.8 in terms of the biextension formulas from Theo-
rem 3.6. O

The exact same remark as in Remark 2.10 applies for the extended Tate pairing computed
through biextensions. If D = mD; with D; associated to a principal polarisation, and
P € A[mD;], and we want to compute the Tate pairing as an element of k* /k*", we need
to keep track of the function glej,Q. There is a tensor map Xp — Xp, gp o = &p. s and if
our starting biextension element gp (; is in the image of this map (on a rational element),
then gleylQ (x) lies in k*¥" for x rational so we can express the extended Tate pairing purely
in terms of the monodromy Ap.

Corollary 3.12. Let Xg be the biextension associated to an ample divisor © on an abelian
variety A.

Fix any biextension element (P, Q, ¢p ) above P, Q, we can also see it as an element of
the group (Xg,q,*1)- If P € A[U], the exponentiation g;lé is a constant Ap, which is the

t-monodromy associated to (P, Q, gp ) Alternatively, we have g;f’QHl = Apgp,0-

IfP,Q € A[t], the Weil pairing eyy @ ¢ is (up to a sign) Ap/Aq. If P € A[E](k), assuming
that gp, , is rational, the non reduced Tate pairing is (up to a sign) et @ ¢ = Ap. Ifk = Fisa

finite field and iy C F ;, we can also define A}, as the constant gl*,lg_l. Alternatively, we have
g;f(g = Apgp,o- Then the reduced Tate pairing is (up to a sign) is given by A'p.

Proof. This is a direct application of Theorem 3.11, using the fact that if £P = 0,59 5 = 1.
See also Corollary 2.5. d

Remark 3.13. Letgp o be asin Corollary 3.12, and Ap the monodromy: g;‘}QY = Ap. Then

iftn, = ml + nq,nqy,ny,m € Z, then g;gz = Alfﬁg;gl. In particular, we have gl*,léﬂ =

Apgp,o and gglé_l = /\Pgl*}'_l. Sometimes, it is easier to compute the monodromy Ap
using these relations.

3.3. The arithmetic of biextensions on elliptic curves: the evaluation representation. To
exploit Theorem 3.11 for computing the Weil and Tate pairings, we need to develop efficient
arithmetic on biextensions. In particular, by Corollary 3.12, to compute the polarised Weil
and Tate pairing efficiently on an abelian variety (A, ©), we need a fast exponentiation in the
group (X@,o, *1) induced by the biextension X¢. In particular we can apply all well known
techniques for group exponentiation: double and add, windowing, slidings windows, NAF,
combings...These tools are of course well known in the pairing literature. But beware that
the context is different for pairings than for scalar multiplication: in the ECC context, the
same base point P is multiplied by different scalars, whereas in the pairing context different
biextension elements gp  are multiplied by the same scalar (.

For simplicity, we go back to the case of elliptic curves, but as usual everything holds
for general abelian varieties. It remains to do the basic group operations, using x1 or *,
since it gives the same result by Proposition 3.4. For an elliptic curve E, taking D = (0g)
the canonical principal polarisation, an element gp  of the biextension X, since it is a
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function with divisor Dp,5 — Dp — Dg = (=P — Q) + (0) — (=P) — (=Q) is (in the
generic case) of the form

X —=XpyQ
Yy —yp—alx—xp)
where « is the slope of the line /p ;; going through P and Q. To compute the biextension law
&p,,0 *1 8p,,0 it suffices to plug in the formula Equation (10) (using the elliptic group law),
and then reduce modulo the elliptic curve equation to obtain an equation of gp, , p, o of the
form above. However, this is not very efficient. We will instead try to find a more efficient
representation of biextension elements.

First, we remark that gp ( is completely determined, up to a constant, from (P, Q) (which
gives its divisor Dp, 5 — Dp — D. Using the full function form of gp ;; to determine
this function is thus overkill; a more efficient representation is to simply use its evaluation
gp,0(Rp) at some base point R The biextension element is then represented by (P, Q, ¢ :=
gp,0(Rp)), we call this the evaluation representation.

Note that if R is a pole or zero of Ry, we can use the standard trick of fixing a uniformizer
TR, at Ro, and “defining” gp o (Ry) to be the first coefficient of the Laurent series expansion
of ¢p ; along TR, (we called this the extended value oin Remark 2.7).

It is customary to take Ry = Of; if

(12) gpox,y) =c

X —=XpyQ

y—yp—alx—Xxp)
is the “usual” (recall that we use a somewhat non standard sign convention, see Remark 2.2)
normalised Miller function with divisor (=P — Q) + (0g) — (—P) — (=Q) and gp p isasin
Equation (12), then ¢p 5 = cpp o 0 &p,(0F) = c (the extended value for the uniformiser
Ty, = x/y).

The biextension formulas (using either law * = %, x,) then gives:
gp,,p,(Ro+ Q)

8p,,p,(Ro)

.uP,Q (X, y) =

(13) (P1,Q,c1) * (P2,Q,¢c0) = c10

from which it follows that
(14) 81*315 = ¢p,0(R) Yo p((Rg + Q) — (Rp))

where divfy p = Dyp — Dp = (—{P) + (£ = 1)(0g) — &(P).

Thus, the biextension arithmetic and exponentiation in the evaluation representation
gives exactly the usual Miller algorithm, modulo our different sign conventions.

Going through all the theory of biextensions only to recover the standard Miller algorithm
might seem overkill. We will be rewarded in later sections when using other biextension
representations.

There are still some useful information we can glean from the biextension interpretation
of Miller’s algorithm. First, as mentioned above, it is well known in the pairing literature that
Miller’s formula form a group law, to which we can apply the standard group exponentiation
algorithms. The biextension gives a geometric interpretation of this group law. In particular,
it gives a geometric interpretation of the various relations on the functions f; p used to define
the ate and optimal ate pairings (we will go back to this in Section 3.4). For instance, by
Corollary 3.12 the reduced Tate pairing is given by fq_lfp((RO + Q) — (Rp)); of course
since the field arithmetic is faster than the biextension arithmetic, it is more efficient to first
compute the reduced Tate pairing via fy p((Rg + Q) — (Ry)) and then proceed via the final
exponentiation by field arithmetic (equivalently: working on the biextension over (0, Q)).
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Secondly, it shows that the values fy p((Rg + Q) — (Rp)) we compute during Miller’s
algorithm are simply a convenient representations of the functions gyp  coming from the
biextension. During the execution of Miller’s algorithm, it can happen that we need to
evaluate our intermediate Miller functions on a pole or zero. The standard solution is to
use a uniformiser, explicit formulas are given in [ , Lemma 3.5.3]. Another solution
is to change the evaluation point R to a new point R;,. But rather than restarting Miller’s
algorithm from scratch, we can change the evaluation point on the fly, by going from the
evaluation representation on R back to the function representation back to the evaluation
representation on R;,. Explicitly, if we have the representation (P, Q, gp,0(Rp)), we can
compute any function (eg the normalised one) yip  with divisor Dp, o — Dp — Dg, and
then use gP,Q (Rb) = lelp/Q (R(’) )gP,Q (RO ) /JuP,Q (RO ) .

Thirdly, the symmetry relation gp, o *1 &p, 0 = 80,P, *2 §0,p, from Proposition 3.4
gives the following relation on the normalised functions yp (:

Lemma 3.14. pip, p,(P3) = pip, p,(P1) = pip, p, (P2).

Pi’OOf ByTheorem 3.6, we have ‘llp ,Q*1 ‘uple = ]lpllQ(')]xlple(' +P1)),Whﬂ€ /uPrQl *n

#p,Q = Hpy, ()P, Q) ypl PZ Q) - It follows that yip, opip, p, (- + Q) = pp, o +
P)pp, p,- Evaluating this equahtmg on O (multiplying both members by the appropriate
uniformiser to that the evaluation is well defined) gives I/lplrpz(Q) = pp,o(P1), from
which the lemma follows by a change of variable.

Remark 3.15. Recall from Remark 2.2 that we use a different sign convention than usual.

In this remark only, we go back to the standard sign convention, and let p ; be the
standard normalised Miller function with divisor (P) + (Q) — (P + Q) — (0g), and f; p the
standard normalised Miller function with divisor £(P) — ({P)— ({—1)(0f). Then Lemma 3.14
becomes on these standard functions: pup p,(—=P3) = pp, p,(—P1) = pp_ p, (—P5).

We leave as an exercice to the reader to prove this fact (and its generalisation to abelian
varieties) without the theory of biextensions.

This gives the following interesting tweaks on Miller’s algorithm: for the Miller addition,
we have f(, 1 p(Q) = £, p(Q)prp,p(Q) = £y p(Q)prp,_o (—LP). In other words, rather than
evaluating the different Miller functions pyp p on the same point, we could evaluate the same
(precomputed) Miller function pp _ on the different points —(P.

Likewise, for the Miller doubling: f“_@,p(Q) = felp (Q)z‘llep,gp(Q) = fe,p(Q)zﬂep,_Q(—eP) .
The numerator of pgp _ 5 is y — y(¢P) — a(x — x({P)), which evaluated on —{P is given by
the simple formula —2y (¢P). However, the evaluated denominator is x ({P) — x({P — Q),
which requires to compute {P — Q. This will be a recurring theme in our latter algorithm
than in our pairing algorithms we will compute arithmetic informations both from £P and
+Q + (P

We remark that faster formulas for the standard Miller’s algorithm have been obtained by

slightly tweaking the Miller functions. In [ ] the authors introduce functions with
divisors ¢(P) + (—¢P) — (£ 4+ 1)(0) which give a streamhned double and add formula. In
[ ], the following formula is used: f;, ¢, p = — 1 instead of the stan-

£, pfoty,Plt;P—1,P
dard formula: fy, .o, p = i, pfi, ppte, ¢, p- We let open the question of whether combining
these tweaks with Lemma 3.14 could give further speed ups.

3.4. The Ate and optimal Ate pairings as monodromy pairings. We also can give a mon-
odromy interpretation of the Ate pairing.
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If X is a biextension associated to an abelian variety (A, D) over a field k, and k/kg is a
Galoisian extension, the Galoisian action can be be described as follows. Let (P, Q, gr,0) €
Xp and 0 € Gal(k/kp), then 0(P,Q,gp o) = ((T(P),(T(Q),gg,Q) where gg,Q is the
function with divisor D, (p, o) — Dy (py — Dy () such that gng(tT(R)) = 0(gp,o(R)).

Now assume for simplicity that (A, D) is an elliptic curve (E, (Og)) over a finite field IFq; as
usual our formulas will still be valid for a general abelian variety over IF; (for a definition of the
Ate and optimal Ate pairings for abelian varieties, see [ 1). For the Ate pairing situation,
we assume that E[{](F ;) is not empty but that the embedding degree d is greater than 1,
thus the full {-torsion is defined over ]qu, and E[{] = G & G, where G; = E[{] (F,) is
the eigenspace of Ty for its eigenvalue 1, and G, = {Q € E[(] (IFq) | an = qQ} is the
eigenspace for the eigenvalue g.

In pairing based cryptography, we consider the (non reduced) Tate pairing as restricted
to Gy x G, — IE';d/IF;;f, while the (reduced) Ate pairinga, ¢ : G, x Gy — IF';d/IF;;f
is given by a, o(P,Q) = f) p((Q) — (0)) forany A = g mod (. In the special case when
A = ¢, the Ate pairing ar , is already reduced, otherwise the reduced Ate pairing is given by
Fup(Q — )T D e .

Now letg = (P,Q, gp,g) be a biextension element with P € G, and Q € G;. Then
77, (8) = (gP,Q, g;”Q) and g*P}L are both biextension elements above (qP, Q). They need
not be equal, and in fact the monodromy between them is precisely the A-Ate pairing.

Proposition 3.16. Let P € G,,Q € Gy, gp o any biextension element in qu above (P, Q),
and let c be the monodromy such that gl*,l’é\ = c11,(8p,Q)- Then c gives the A-Ate pairing:
ao(P,Q) =c

Proof. Immediate from the definitions and Porism 3.10. O
Remark 3.17 (Optimal Ate). Write { = Y c;q". Then rather than computing gl*)lé as

H*l,i (gI*)lQCz ) i _ er ¢(P, Q) (the non reduced Tate pairing), we can compute n*l,i (71}%) g
C. By Proposition 3.16, this will differ from the Tate pairing by a bunch of Ate pairings; and
by Porism 3.10 this is exactly the optimal Ate pairing.

We leave to the reader the monodromy interpretation of the twisted Ate and the Eil pairing
when given an automorphism « of order dividing d.

Corollary 3.18 (Explicit formulas). Using the evaluation representation (P, Q, gp,0(Ro)) of
biextension elements, the Ate pairing on G, x G is computed as follows: if gp (; is represented
by (P,Q,c¢), andgl*,fg = (qP,Q, ') thenay ((P,Q) = ¢'/c".

Ife =Y aq’, andgl*j}s" = (a;P, Q, c;), then the optimal Ate pairing is given by the constant
[T, ,@aP,Q.cl).

Remark 3.19 (The reduced Ate and Tate pairings). When computing the A-ate pairing,
changing the representative ¢p o by u - gp o for some u € F; changes the value of the

A-Ate pairing by g;lé\ /74(8p,Q) = u*~9. Hence we recover the fact that the g-Ate pairing
is already reduced, and does not depends on the choice of representative.

. g
Asan aside, since yty C F gi> We saw that the reduced Tate pairing was given by gplg /8p,0
for any gp ( defined over F gt The true definition of the reduced Tate pairing should actually

be as the monodromy g}lg /7054 (8p,q)- In this case, it does not depends on the choice of

*1,C

P,Q
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representative for gp (; either, even a non rational one, and reduces to the definition given
above when gp ¢, is defined over F ..

Remark 3.20 (The Ate and Tate pairings as Weil-Cartier pairings). It is well known that the
reduced Tate pairing et ((P, Q) is induced by the Weil-Cartier pairing Crd_1 E [71,‘; —1]x

E[ﬁqd — 1] - G,,,. Furthermore, ﬁqd = 7'[5Z when restricted to E[{], by definition of the
embedding degree.

It is maybe less known, but the g-Ate pairing can also be interpreted as a Weil-Cartier
pairing:

(15) 4y (P,Q) =er 1 (P,Q)7T = 1(P,4Q) = e 1 (TP, 7, Q).
We remark that by definition, G; C Ker7r, —1and G, C Ker 7, — 1. Equation (15) can
be proven using the relationship between the Ate and Tate pairings (see [ 1), and the

relationship between the Weil-Cartier pairings of Ty —1and nf; -1= (7Tq— DA+---+ ng_l )
coming from the compatibility of the Weil-Cartier pairings with isogenies.

We will use this to give a monodromy interpretation of the Weil-Cartier pairing associated
toﬂg—landnq—l.

First as a warm-up, let us recall the monodromy interpretation of the Weil pairing: we
take P,Q € E[{], a gp,o in the biextension above them, and compute the monodromy
gl*,lé = ¢1 - 8p0 gl*}é = ¢y - gp,q to get the Weil pairing ey ((P,Q) = ¢1/cp. An
alternative way is to compute the monodromy ( g}lé)*Z'@ = c( g;Z’Q@)*l'“, a quick calculation
gives ¢ = ¢1/c5(ca/c1)" = ¢q/c, (using that ew (P, Q) € uy) so this also gives the Weil
pairing (and we recover the commutator interpretation of Example 2.1).

For the a-Weil-Cartier pairing, # an endomorphism, to compute e, (P, Q) when P €
Kerw and Q € Ker &, it is natural to see if a possible strategy to compute ¢, is to take the
quotient of the monodromy of the action of & on gp (; (any biextension element above (P, Q))
with respect to 1, and the action of & on ¢p ; with respect to x,. Using Proposition 3.16
and the interpretation of the reduced Tate and Ate pairings as Weil-Cartier pairings above,
we'll see that an analogous strategy does hold fora = 77, —1and a = ng -1.

We first start with the Weil-Cartier pairing for 7'[{71 — 1. We first want to compute the
action of 71{71 — 1 on gp o with respect to x; and compare it with 1; it will be easier to
compute 7'(,? on ¢p o and compare it with gp 5 ng (8p,0) = ¢1 - &p,o- Likewise, rather
than computing the action of frqd — T ongp o with respect to x, and compare it with 1, we
will compute the action of ﬁf; on gp o and compare it with gp 5. Now ﬁg = qd Ty 4 We

d
*20" _

have 7174 (gp.0) = 1/7;%(c1) - 8p 0o and (7%) -, (8p0) = (1/m; () 832
1/¢cq gl*f(gd So the monodromy quotient is given by gl*,%gd/ ng (§p,o) which is precisely the
formula from Remark 3.19 for the reduced Tate pairing. Hence we do have a correct formula
for the Weil-Cartier pairing of 713 -1

Now we try to find a monodromy approach to compute the Weil-Cartier pairing for
Ty — 1 on nq(P),nq(Q), with nq(P) S Gl,rcq(Q) € G, (beware that we switched
arguments compared to Proposition 3.16). We can assume that we are given an element
of the form ¢(p Q) = 77,(8p,0) above (1,(P), nq(Q)). We want to first compute the
quotient of the action (with respect to x3) of 77, = g7 L on 77,(8p,0) and 71,(gp,0)- By
the same computation as above, the result is precisely the monodromy 81*92(5 /74(8p,Q) 1€
the g-Ate pairing (using the symmetry x, = x; and the fact that we switched the side of the
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arguments). Strangely, in this case we do not need to compute a monodromy action of 77, on
&(P),(Q) With respect to x; and compare it to ¢ (p), (Q)-

4. CUBICAL ARITHMETIC

In this section, we introduce the cubical representation of biextension elements, from
which we will derive efficient biextension arithmetic on Kummer lines.

We refer to [ ; , Chapitre 1] for the concept of cubical torsors, and notably
to [ , Introduction; , Chapitre 1, § 2, 3] for illuminating discussions on the
relationship between squared torsor structures, theta groups, cubical torsor structures and
symmetric biextensions (notably: on an abelian variety line bundles admit squared and
cubical structures, the cubical structure being induced by the squared one; and theta groups
correspond to the squared structures, and symmetric biextensions to the cubical structures).

We first introduce the algebraic Riemann formulas in Section 4.1, which we use in Sec-
tion 4.2 to define cubical points and an arithmetic on cubical points. We show in Section 4.3
that the cubical arithmetic is a refinement of the biextension arithmetic, and can thus be used
to get a representation of biextension elements. We reframe in Section 4.4 pairings in terms
of cubical points. In Section 4.5 we introduce the affine lift representation of cubical point,
and compare it with the evaluation representation of Section 3.3. We show in Section 4.6
that with small tweaks, these affine lifts also give a good representation of cubical point on a
Kummer variety A/ + 1. In Section 4.7, for a complex abelian variety A/C = C8/A, we
make explicit the link between the cubical arithmetic and the transcendental/analytic group
law on C&. We then specialize our formulas to the case of elliptic curves in Section 4.8.

4.1. The algebraic Riemann formulas. Let D be an ample divisor on an abelian variety. We
will assume that D is symmetric up to linear equivalence, ie [—1]*D ~ D. Upon changing
D in its algebraic equivalence class, which does not changes the associated polarisation, we
can always assume this is the case (possibly over a field extension). Changing D in its linear
equivalence class (possibly over a field extension again), we could even assume that D is
symmetric.

Proposition 4.1. Let P{,P,,P3,P, € A,2R = Py + P, + P3 + P4, and Q1 = R — Py,
Qy =R —Py,Q3 =R —P3, Q4 = R— Py (weremark that 2R = Q; + Qy + Q3 + Q4
and P; = R — Q; so the situation is symmetric in the P;, Q;). There is a canonical function 7y
whose divisor is Dp, + Dp, + Dp, + Dp, — Do, —Dg, — Do, — Dg,.

It is convenient to reframe this in terms of line bundles: let L = O(D) be the associated
symmetric line bundle. Denote by Lp the translate t}, L. Then there is a canonical isomorphism

(16) "’CP1®”CP2®"CP3®¢CP42£Q1®”CQ2®”CQ3®’CQ4

We call this isomorphism an algebraic Riemann relation, and use the notation [Py, P5, P3, P4; Qq, Qo, Qs, Q4]
to denote that the points P;, Q; are in Riemann form.

Proof. Wehave Dy + Do, =2Dr — Dp, — Dpy = Dp, + Dp,. Hence, there exists some
(non canonical) function & with divisor Dp, +Dp, =D, —Dg,. Now [—1]*a has for divisor
([-117"D) _p, +([-11"D) _p, = ([-1]*D) o, — ([-1]*D) _q,,s0 tx[-1]*a = a(R—(+))
has for divisor ([~1]*D)g_p, + ([=11*D)g_p, — ([=11"D)g_q, — ([=11*D)g_g, =
([-11"D)g, + (I-11"D)q, — ([=11*D)p, — (I-11"D)p,.

Since D is linearly equivalent to [—1]*D, there exists some function 8 with divisor

[~11"D=D. Itfollows that (R~ (-)) 555 82 has for divisor Doy, +D g, ~Dp, ~Dp,.
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Hence the function
_oa) BCH+QBE+Qy)
7T AR =) BC+PBC+Qy)
has for divisor Dp, + Dp, — Do, — Do, — Do, — Dg, + Dp_ + Dp, as wanted, and it
does not depend on our choice of , B.

Using the language of line bundles, the proof simplifies as follows: fix an arbitrary iso-
morphism a : Lp ® Lp, - Lo, ® L, and use t3[—1]*x along with any isomorphism
6 : [—1]*L = L (in practice it will be convenient to use the canonical one rigidified at 0)
to obtain an isomorphism &, : L, ® L, = Lp, ® Lp,. We then have an isomorphism
y=a®ay': Lp @ Lp, ® Lp, ® Lp, = Lo, ® Lo, ® Lo, ® Lo, which does not
depend on the choice of «. O

Remark 4.2. We remark that if D is symmetric, we can take 8 = 1 and the function ¢
al-)
a(R=())"

D = (Og); we recall that & is any function with divisor Dp, + Dp, —Dg, — D, .
We also remark that -y is constructed from «, whose existence comes from the theorem
of the square. On an abelian variety a line bundle has a canonical squared structure which

induces the canonical cubical structure.

simplifies to y = For instance, this is the case if A = E is an elliptic curve and

Example 4.3. We have the following important squared and cubical relations (compare with
[ ,$1.2.3]and [ , 1.(2.4.1)] respectively) as special cases of Proposition 4.1:

e [P+Q,P—-0Q,0,0,-Q,Q,P,PLIf D is symmetric, the function 7y associated to
. P=C)) . . .
[P+Q,P-0Q,0,0,-Q,Q,P,Plisy = gQé;T’ with ¢ _ o a function with
divisor D + D_g.
e [P+Q+RP,QR;0,Q+R,P+R,P+ Q] If D is symmetric, the function ¢
associatedto [P+ Q+R,P,Q,R;0,Q+R,P+R,P+Q]isy = ‘W
with ¢  a function with divisor D, g — Dg — Dkg. l
A trick to find vy in practice is to remark that <y has for divisor Dp, o + Dp_o —D_g —
DQ — 2DP and DP+Q+R + Dp + DQ + DR — DQ+R — DP+R — DP+Q respectively, and
satisfy the equation y(-)y(T —-) = 1 where T = Pand T = P + Q + R respectively. (More
generally, if [Py, Py, P3, Py; Qq,Q5, Q3, Q4] are in Riemann positions, <y has for divisor
Dp1 +Dp2+Dp3 +Dp4 —DQ1 —DQ2 —DQ3 —DQ4and2T =P1 +P2+P3+P4.)In
particular, if T = 2T", y(T")? = 1, so *y is determined up to a sign from its divisor and this
equation.

4.2. Cubical structure and cubical arithmetic. We can use Proposition 4.1 to define a
“cubical arithmetic”

4.2.1. Normalised symmetric isomorphism. Let L be a symmetric line bundle on A, and
a: L ~ [—1]*Lan isomorphism.

Then if P € A, a induces a(P) : L(P) ~ ([-1]*.L)(P) = L(-P).

Following [ , § 2], we call @ normalised if #(0,4) is the identity map; such an
isomorphism always exist.

4.2.2. Rigidifications. When L is a line bundle on an abelian variety A, we recall that a
rigidification of .L at a point P € A is the choice of an isomorphism Oy4 (P) — L(P) :=
L ® O4(P) (we will take our rigidifications to be rational). The rigidifications at P form a
torsor under G,,,.
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We remark that a line bundle is locally trivial for the Zariski topology, so we can always find
alocal trivialisation around P given by an isomorphism Oy p — L ® Oy4 p. A trivialisation
¢p : Ogp = L ® Oy p induces an isomorphism on the residual fibers: ¢pp : k(P) =
L(P) := L ® k(P), so a rigidification at P.

Conversely, a rigidification, i.e. an isomorphism on the fibers always lift (non uniquely)
to a local trivialisation. Looking at the image of 1 € () under a trivialisation, we see that a
choice of trivialisation is the same as a choice of local section s of .L at P which generates
Llocally at P, or equivalently s(P) # 0 (the value of s at P is not well defined, but the fact
that it is zero or not is). Reformulated in terms of a divisor D associated to .C, a local section
s is a function such that div(s) + D has no poles at P, and s generates L locally at P if for
all other local sections ¢, the function /s does not have a pole at P. Trivialisations are more
conveniently expressed in terms of line bundles, which is why we have started to switch to
this language in Section 4.1. Two local trivialisations, induced by local sections 51, s, give
the same rigidification at P iff (s1/s,)(P) = 1.

Furthermore if L. =~ M, then since A/k is proper and integral, Hom(.L, M) = T'(4) = k.
So a rigidification of L, M at P is enough to fix uniquely a global isomorphism L — M.

4.2.3. Cubical torsor structure. Let M € Pic®(A), m : A x A — A be given by the addition
map, and 779, 77, the two projections. Consider the line bundle AM = m*M ® 7} M1e
ey M1, Since Mis algebraically equivalent to 0, it is translation invariant, so A M is fiberwise
trivial, hence is trivial by the seesaw theorem; it is completely rigidified by a rigidification of M
at 0 4. In particular, once a rigidification at 0 4 of M is fixed, we have canonical isomorphisms
M(Q1 + Q) = M(Qq) ® M(Qy), satisfying various natural compatibility relations on
A x A x A. This is the squared structure associated to a line bundle algebraically equivalent
to 0.

Now if L is a line bundle, then Mp := t5.L ® L1 is algebraically equivalent to O.
Fixing a rigidification of .L at 04, we obtain canonical isomorphisms L(P + Q; + Q) ®
L(Qq) ® L(Qp) = L(P+ Q1) & L(P+ Qy) ® L(Q; + Qy), which depends on a
choice of rigidification of Mp at 04. These isomorphisms are subsumed as follows: let #1753 :
AxAxA — A, (Py,Py,P3) = Py+Py+P3,myj: AXAxA — A, (P, Py, P3) > Pi+PD;
and m; = ; the projection map. Consider the line bundle 7} 53 L @ m}, L™ @ mi, L1 ®
mi L7t @ mi L ® myL ® m5L. Then the theorem of the cube implies that this torsor
is trivial, and globally rigidified by a rigidification of .L at 0 4. This is the cubical structure
associated to a line bundle .(; by the discussion above this cubical structure can be recovered
from the squared structures on the Mp.

4.2.4. Cubical arithmetic. On an abelian variety A, fixing a rigidification of L at P is the same
as fixing a rigidification of .Lp := t}, at 04: a local isomorphism ¢ : O4(04) — Lp(04) at
0,4 induces by pullback a local isomorphism t},¢ : O4 (P) — L(P) at P.

Given P € A, we will denote by P the choice of a rigidification ¢35 of Lp (implicitly at
04). IfA € G,,, we will denote by AP the rigidification App. We will call P a cubical point;
the reason for the terminology and the notation will become clear in Section 4.5 where we
introduce a convenient way to represent ¢3: a cubical point P is a “point” lying above the
projective point P, with a cubical arithmetic induced from Section 4.2.3.

The cubical arithmetic may be defined as follow: if we have fixed a rigidification of L at
0,4 and rigidifications of .L at Py, P, P3, P + P5, P; + P3, P, + P3, then by the cubical
structure, using the canonical isomorphism L (P + P, + P3) @ L(P1) ® L(P,) ® L(P3) =
L(Py + Py) ® L(P1 + P3) ® L(P, + P3), we have a canonical rigidification of .L at
P14+ P, + Ps.
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More generally, we can use the algebraic Riemann relations. Let [Pq, P, P3, Py; Q1, Q2, Q3, Q4]
be points in Riemann position. By Proposition 4.1, given a rigidification 13;, ’Q\: on seven out
of our eight points P;, Q;, there is a canonical rigidification associated to the last one. We
call the corresponding rigidification the one induced by the cubical arithmetic. We then say
that the cubical points [?1, ﬁz, ﬁ3, ?4 ; Ql, sz QS, @4] are in Riemann position.

Example 4.4. By Example 4.3, we have the following special cases of cubical arithmetic. We
fix once and for all a choice for 0 4.

e GivenP,Q, P — Q, we have a canonical rigidification P+ Q, which we call a cubical

differential addition. We denote PTQ = DiffAdd(P, @, P’—\/Q). As a special case

where P = Qand P — Q = 04, we have a cubical doubling 2P = Double(P).
e Given P,Q,R, P+ Q,P + R, Q + R, we have a canonical rigidification P + Q + R,

which we call a cubical three way add. We denote P +,(j/+ R = ThreeWayAdd(le, @, R, PTQ, P ¥R, QTR).
e More generally, given points P; and their two by two sums PiTPj, we can compute

a multi way addition P; + -~ + P,, by iterating multiple three way additions.

In particular, given P we can use a ladder cubical differential additions and doublings to
compute a cubical scalar multiplication {P. Likewise, given P + Q, P, O, we can compute
iP¥Q though a ladder. We will denote P ¥ Q = ScalarMult(¢, P+ Q,P, Q) and (P =
ScalarMult(¢, D).

We can also define the opposite of a point as follows. Since L is symmetric, we take
the normalised isomorphism & : [—1]*.L =~ .. If P is a rigidification of .L at P, [—1]*P
is a rigidification of [—1]*.L at —P, and we can use the isomorphism above to obtain a
rigidification of . at —P, which we denote by —P. Since we use the normalised symmetric
isomorphism, we have —0, = 0,.

The cubical arithmetic is homogeneous with respect to the action by G,,,. (We recall that
if P is a cubical point corresponding to an isomorphism Q4 (P) — L(P), AD is the cubical
point corresponding to this isomorphism multiplied by A.) More precisely, we have:

Lemma 4.5.

L] If[l’\jl,l’\)é, ﬁ3, ﬁ4, Qll @2, Q3, 64] arein Riemannposition, then so are [/\P,ll’\jlr/\P,ZﬁZ/)LP,Sl’\j?ﬂ /\P’41’\j4;/\Q’1 @1,/\(2

whenever AP,IAP,ZAP,3/\P,4 = /\Qll/\Q,zAQﬁ/\Q,‘L;
o —(AD) = A(-D)

~ ~ — ~ AZAZ o A o —
e DiffAdd(ApP, A oQ,ApoP — Q,A¢0) = ——= DiffAdd(P,Q, P — Q,0);
AroMo

L] ThreeWaYAdd(/\Plpl,/\pzpz,/\P3P3,/\p2+p3P2 + P3,)Lp1+p3pl + P3,/\p1+p2P1 + Pz,/\oO) =

AP P /\P P /\P P /\0 — = —_— —_— —_— ~

L 3P12A+P;AP;+ 3~ ThreeWayAdd (P, P,, P5, P, + P53, Py + P3,P; + P,,0)

o ScalarMult(¢, /\PQPTQ/ ApP, /\Q@/ Ag0) = /\%Q/\E;(E_l)Aé@_l))\(}m_l)/\g ScalarMult(, P + Q, P, 0, 0)

We warn that the cubical arithmetic defined in Example 4.4 does not form a group struc-
ture (unlike biextensions which do induce compatible groups structures on subsets). The
cubical arithmetic shares many analogy with the arithmetic of a Kummer variety. Further-
more, using [ , § L.5], all expected natural relations do hold in the cubical arithmetic.
We note also that if P is a point of {-torsion and we fix a rigidification P, then (P is a rigidifi-
cation of .L at 04 so differ from our global choice of 0 4, by some constant A: (P = A0, iy

In general, we will have A # 1 (i.e,, P will not be of {-torsion), in fact constants like A will
provide us exactly the monodromy informations which gives the Weil and Tate pairings.
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4.2.5. Functions associated to cubical points. Let D be a divisoron A, Z = Y n;(P;) bea
cycle on A such that s(Z) = )" n;P; € A[D], then there exists a rational function f, with
divisor 3’ 1;Dp .

Switching to the language of line bundles, if we are given cubical points P; above each P;
(as a shortcut we could say we have a cubical cycle Z = Y 1,(P;) above Z), then since the line
bundle ®i£§i "i is globally trivial, and each rigidification P; on Lp, induce a rigidification
of ®iL§ "i, the cubical cycle Z induces a well defined global isomorphism O, =~ ®i£§ i,

There is thus a well defined function f7 with divisor } ,1n;Dp . l

4.3. The cubical representation of the biextension. We can now define the cubical rep-
resentation of a biextension element ¢p o € Xp. Recall that the function gp  has for
divisor Dp, o + D — Dp — Dy; in terms of line bundles it corresponds to an isomorphism
Lp ® Lo = Lpyg ® L where L = O(D) is the line bundle associated to D.

We can proceed as in Section 4.2.5 for the cycle Z = (P + Q) + (0) — (P) — (Q). Namely
assume that we are given local rigidifications at 0, 0, P, Q,P+Q,of L, Lp, LQ, £pQ re-
spectively. These give a local isomorphism Lp ® L5 — Lp, o ® Lat 0. Since these line
bundles are globally isomorphic, this local isomorphism lift to a unique global isomorphism,
hence defines a biextension element which we denote by (P, Q,¢p o) = [P, Q; 0, PTQ].
(We will often assume 0 has been fixed once and for all and drop it from our notations).
We call this the cubical representation of the biextension. It is convenient to also use a two

dimensional notation: 5 N
(P, Qsp) =&
& 8pQ) = 0 P+0Q)°

Recall that P is a notation for a rigidification ¢ : O4(0) — Lp(0) at 0, so by abuse of

P

notations we denote by P+Q®0®P @0 ! (oreven
product of rigidifications 04 (0) — Lp,(0) ® L(0) ® QCIZl(O) ® oCél(O). The rigidifi-

;go) the corresponding tensor

cation ngo lift to a global trivialisation, which is associated precisely to the biextension

function gp  given by the cubical representation.

Remark 4.6. This representation is quite similar to the evaluation representation; instead of
representing ¢p  through its extended value at 0, we use a rigidification of Lp, o ® L ®
Ly lg Lél at 0. We refer to Section 4.5 for the relationship between the two representations.
The advantage of the latter representation is that it can be further refined though local
rigidifications of Lp +Or Lp, £Q --- at 0 (which do not come from global functions evaluated
at 0 since these line bundles are not trivial individually).

In the evaluation representation we could change our evaluation point from 0 to Ry;
likewise here we could use instead a representation of the form

(P,Q.8p,0) = ( Ry PARo ) .
Q+Ry P+0Q+R

We could even use the cubical three way add introduced below to change the base point

Ry of our representation on the fly; but on the following we will stick to using Ry = 0 for
simplicity.

We remark that this representation is redundant: the possible choices of ¢p  form a
G,,,-torsor, while the choice on the right hand choice consist of four G,,-torsors. From the
definition, we have:
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Lemma 4.7. Given Ao, Ap, Ao, Apg € G, we have

APQAO
Ao

[ApP,AgQ;A00,ApoP + Q] = [P,Q;0,P+Ql,

so they define the same biextension element if and only if ApoAg = ApAg.

We will see that although it is redundant, the cubical representation give a fast biextension
arithmetic. An analogy is using the redundant modified Jacobian coordinates (X, Y, Z, T)
to compute the scalar multiplication of an elliptic curve.

Now we explain how to recover the biextension arithmetic in term of our cubical rep-
resentation and the cubical arithmetic. There are actually several possibilities (the cubical
arithmetic is a refinement of the biextension arithmetic), and we will focus on two specific
formulas.

Theorem 4.8. Fix 0, and let P, P5, P + Q,P5 + Q be cubical points, and let 8p,Q =
[P1,Q;0,P; + Q] gp,,0 = [P1, Q;0, Py + Q] the associated biextension elements. (We can
always use Lemma 4.7 to ensure that our representation use the same Q).

Take Py + P, an arbitrary cubical point above Py + Py and let

Py + P + Q = ThreeWayAdd(P;, P,, Q, Py + Q,P; + Q, Py + P).

Then gp, o *1 8p,,Q = [Py + P,,Q;0,P; + P, + Q1. We call this a (cubical) biextension
standard addition.

Alternatively, assume that [Py — Py, Q;0,P; — P, + Q] is a cubical representation of
gpl_pZ/Q = gpllQ*lg;;él. LetP{TPz = lefAdd(ﬁ{, ﬁz/, Pl’:lpz) andPl +/?2/ + Q =
DiffAdd(Py + Q,P;, Py — P; + Q). Thengp, o*18p, o = [P1 + P2, Q;0,P; + P; + Q.
We call this a (cubical) biextension differential addition.

As a particular case, when Py = Py = P, and we have gp o = [P, 0;0,P + QJ, we can
takego o = 1 = [0,3;0,0], soifwelet2P = Double(P) and 2P + Q = DiffAdd(P + Q, P, Q),
we have: gp o *1 8p,0 = (2D, @; 0, ZPA-FQ]. We call this a (cubical) biextension differential
doubling.

Proof. This is a translation of the fact, explained in [ ; , Chapitre 1], that the
cubical structure induce a symmetric biextension, and the various natural compatibilities of
the cubical arithmetic, to which we refer to [ » § I.5]. We will also give an analytical
argument in Section 4.7.

For the reader who does not like abstract proofs, we will prove the first statement using
the explicit formulas of Proposition 4.1 and leave the second as an exercice.

By definition of the cubical representation [P;, Q; 0, P; + Q], the rigidification P; + Q ®
0® P;_l ® Q! globalises to a global trivialisation, which from the divisor point of view
corresponds to a function gp_ o with divisor Dp o — Dp, — Dg.

We will assume D symmetric by simplicity. By Example 4.3, the point Py + P, + Q
computed through the cubical arithmetic is such that P, +P,+QeP;®P, 00007 '®
Py + Q_1 ®P; +. Q_1 ® Q! corresponds to a global trivialisation induced by the function
8p,,p,(P1+ P2+ Q—)/gp, p, ().

It follows that the function associated to the cubical representation [Py + P,, Q;0, P, + P, + Q],
8py,py(P1+P2+Q—)
8py,py ()
thatgp p, (P14 Py +Q—-) =gp, p,(Q + -). These two functions have the same divisor

is equal to 8p,,08P,,0- Comparing with Equation (10), we need to check
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Input: abiextension element gp 5 = [P,Q,0, P+ Q] represented by cubical points
Output: cubical points (P, (P + Q such that gl*,lQe = [¢P,0,0,tP ¥ Q]
> For each bit b; of { from left to right (skipping the first one), given a cubical representation
nP,nP + Q, of g;lél , where 7 is the current truncation of ¢ on the leftmost bits, do a
cubical biextension double:
a. 2nP + Q = DiffAdd(nP + Q, nP, Q);
b. 2nP = Double(nP);
And if b; = 1, also do a cubical biextension addition:
a. Compute (2n + 1)P = 2(nP) + P and take an arbitrary cubical lift (21 + 1)P of
(2n + 1)P.
b. 2n + )P + Q = ThreeWayAdd(2nP,P,Q, P + Q,2nP + Q, 21 + 1)P);

ALGORITHM 4.1. Biextension exponentiation via cubical double and add

(using our assumption that D is symmetric), and their evaluation at a point T such that
2T = Py + P, yield the same value gp, p,(Q + T), hence they are equal. We leave the case
where D is only linearly symmetric to the reader (we could also invoke flat descent to reduce
to the symmetric case). g

Example 4.9. If gp 5 = [B,0;0,P + QJ, then g;}&l = [-P,Q;0,—P + Q], where
—P + Q = DiffAdd(—P,Q,P + Q).

If we have a cubical representation of gp, ,&p, o as above, and also a cubical repre-
sentation of gp. 5 *1 §p,,0' §P,+P,,Q = [Py + P,,Q;0,P; + P, + QJ, then &p,-P,, Q0 =
[Py = P,,Q;0,P; = P, + Ql,isacubical representation ofgp, ,Q*lg;z”él, where P{ — P, =
DifftAdd(P,, —P,, Py + P5) and Py — P, + Q = DiffAdd(P; + Q, —P,,P1 + P, + Q).

By Theorem 4.8, we have two algorithms to compute the biextension exponentiation g ! 5

in the cubical representation gp 5 = [P,0;0, P + Q]. The first one, given in Algorithm 4.1
is a standard double and add algorithm, using standard (cubical) biextension addition,
each biextension addition involving one abelian variety addition and one cubical three way
addition. We note that by Theorem 4.8, we actually have two ways to compute biextension
doubling in a double and add ladder: either we use a biextension normal addition of ¢p
with itself, or we use a cubical biextension differential doubling. In Algorithm 4.1 we use the
second method, because it is the faster one for Kummer lines.

The second one is to do a differential ladder, using a cubical differential ladder to compute
{p, QP’:-:EQ frcin/ gp,0- N’ain/ely at each step we have g’ o, glrflJél, repre/e—silted via the cubical
points mP, mP + Q, (m + 1)P (in theory we would also need Q + (m + 1)P to represent
gl’f’Jél, but we will see we won't need it in the algorithm; and in any case it could be recomputed
on the fly through a three way addition). In other words, we use a biextension ladder, each
step involving a cubical biextension differential addition and a cubical biextension doubling
(here using a normal cubical biextension doubling would not be correct). Each step of this
biextension differential ladder then involves a cubical doubling and two cubical differential
additions. (It should involve three cubical differential additions but from the remark above
the one to compute the Q + (m + 1)P is not used).
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Input: abiextension element ¢p. 8r0 = =[P,Q,0,P + "+ Q] represented by cubical points
Output: cubical points (P, (P + Q such that gP Q = [¢P,0,0,tP ¥ Q]

> Compute 2P = Double(lAj), 20 ¥ Q= Diﬁ’Add(PTQ, P, Q) to get a representation of

*1,2

8p,Q
> For each bit b; of £ — 1 from left to right (skipping the first one), given a cubical represen-
tation 7D, (n + 1)P, (n + 1P + Q ofgp 0> g;lgﬂ where 7 is the current truncation of
£ — 1 on the leftmost bits, compute:
a. Ifb; = 0:

« 2n+DP + Q = DiffAdd((n + P + Q, nP, P + Q);

« (21 + 1)P = DiffAdd((n+ 1)P,nP, P);

« 2nP = Double(11D);
b. Ifb;, = 1:

« 2(n+ 1P + Q = DiffAdd((n + P + Q, n + 1)P, Q);

« 2(n + 1)P = Double((n + 1)P);

o (21 +1)P = DiffAdd((n+ 1)P, nP, P);

ALGORITHM 4.2. Biextension exponentiation via a cubical ladder

In Algorithm 4.2 we present such a ladder algorithm, except we use a ladder of the form
glrf,_Ql, gl'f,Q represented by the points (m =1)P,mP + Q, mP instead.

We also need to explain how to work out the action of A[D] on the biextension X, from
Lemma 3.9 via cubical arithmetic. If T € A[D], we take any (T, g7) € G(D). This is the
same as a choice of isomorphism ¢ : L — t7..L. Given a cubical point D, i.e a rigidification
of L at P, we can use ¢ to obtain a rigidification of L at P, which we call g7 - Q.

Lemma 4.10. Ifgp o = [P,Q;0,P + Qland T € A[D], then letting any g1 be such that
(T,g1) €GID), T-gpo=18T" P,Q;0,gr- P+ Ql.

Note that the global isomorphism ¢, hence (T, gr) € G(D) is completely determined
by an isomorphism on the fiber at 0, so a cubical point T above T (provided we have fixed 0).
So, fixing the base point 0, we can rewrite the action of G(D) on cubical points as an action
T Pogp.-D=TTP.

We remark that if the cubical points [Pl, P,,P5,P4;0;1,0,,05,04] are in Riemann
p0s1t10n and [51, 52, 53, 54, Tl, Tz, T3, T4] are too, with each Sl, T; € A[D], then so are
[Py +S1,Py + Sy, P3 + S3, Py + 54;Q1 + T1,Qa + T, Q5 + T3, Qs + T4l.

4.4. Pairings via the cubical representation. Using Section 4.3 to represent biextension
elements, by Theorems 3.11 and 4.8 we get the following formulas for pairings:

Theorem 4.11. Let g0 = [P, Q; 0, PTQ], and use any of the two cubical biextension
exponentiation to get a representation g;lQe = [tP,Q;0,tP ¥ Q1.
Assume that P € A[{D], we can then use the action of —{P from Lemma 4.10 to compute
—P- g*v“ = [—(P-IP,Q;0, —P-P + Q]. Then —(P-IP = A p0, —P-tP + Q = A, pQ,
P¥Q 0

so —{P - gp Q = Ap withAp = Ay p/Ag p. We will also denote Ap = (—{P) - 5 B
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If Q € A[UD] too, then the Weil pairing is (up to a sign) ey p(P,Q) = Ap/Aq. If
P e A[tD](k), Q € A(k) and our cubical points are rational, the non reduced Tate pairing
is (up to asign) er p (P, Q) = A

Ifk = Fy, uy C Fy, and P € A[U], we can also recover the reduced Tate pairing by
computing A}, such that gpl A1 = = A, or alternatively such that gl*,lg = Abgp,o- We have
= - DP+Q 0 _4P¥Q 0

P 0 (@-DP  P+Q P’
The same remark as in Remark 2.10 still applies.
As in Porisms 2.9 and 3.10 we get:

Porism 4.12. Let gp o = = [P,0;0,P + Q], and use any of the two cubical biextension
exponentiation to geta representation g*l’ = [@T’, Q,' G, QPTQ]

Then the function fy p evaluated on the cycle (x + Q) — (x) is given by

8h,0
— !
If furthermore P € A[QD],thenf_@DP((R +Q)—(R)) =—IP- Ei{,}?&iﬁ (i}gﬁilzg)

We have a natural Galois action on cubical points: if o is a Galois group element, o (P) is
the rigidification of our rational line bundle L at o (P) given by applying ¢ to the rigidification
of LatP.

In the context of the Ate and optimal Ate pairings, Proposition 3.16 and Corollary 3.18
then become:

Proposition 4.13 (Ate and optimal Ate pairings in the cubical representation). Let A/F,
be an abelian variety with embedding degree d > 1 with respect to &: jty C Fa. Let G1, Gy
denotes the subspace of A[{] where the Frobenius 71, has eigenvalues 1 and q respectively.
Let P € Gy and Q € Gy. Take any cubical biextension representation (P,Q,¢p o) =
[P,0;0,P + QJ. Let A =g mod (.
Then (P, Q,8p,0)" " = [AP,Q;0,AP + Qland 7, ((P,Q,8p,0)) = [y (P), 71, (Q); 774 (0), 71y (P + Q)]
both represent biextension elements above (qP, Q). They differ by a monodromy constant which
gives the (non reduced, except if A = q) A-Ate pairing.
Explicitly, assuming that Q, 0 are chosen to be F;-rational for simplicity,

PrQ my(P)
oy (p,Q) = ALHE T
T, (P+Q qP

Ift = Y c;q', we can compute two cubical points (P + Q, UP as follows:
(1) Compute the c;P + Q c;P via a cubical biextension exponentiation;
(2) Computec; qlP +Q, ¢ qlP by applymg 7'[’ to c;P + Q,c;;
(3) Compute iteratively Q + ClqlP + Z q]P ciq'P + Z q7P by taking an arbitrary
choice for c;q'P ff C‘qu and then using a cubical three way addition to compute
Q+c qiﬂz ¢;q/ P from Q, c;q'P, 2 qJP and the two by two sums c;q'P + Z c;q'P,
Q+cqP, Q+Z qu
Then [IP, Q;0, (P + Q] is a biextension element above (0,Q), hence represents a constant
P+ Q
0

equal to ——= = which is the optimal Ate pairing.
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Remark 4.14 (Cubical arithmetic versus biextension arithmetic). The cubical arithmetic is
a refinement of the biextension arithmetic, since we can recover the biextension arithmetic
from it. On the other hand, since for pairings we only need the biextension arithmetic,
and different cubical points can represent the same biextension points by Lemma 4.7, we
have some leeways: even if we don’t compute the correct cubical arithmetic, as long as the
underlying biextension arithmetic is still correct, our pairings will be correct.

We have seen an example already when using the cubical biextension double and add to
compute gl*,lQE The points {P, (P + Q we obtain in this way are not the correct one from the
cubical point of view, but they differ from the correct ones by the same factor A, which mean
that the associated biextension element is still the correct one by Lemma 4.7.

An important example of the difference between the two arithmetic is with respect
to the multiplication by elements A € k. In the biextension (or theta groups), we have
(A ‘gP,Q)*l’g = Al glﬁlé By contrast, we have {(A - P) = ACP.

One can use Lemma 4.5 to check directly that the Weil pairing and the class of the non
reduced Tate pairing as computed in Theorem 4.11 does not depends on the choice of
P, Q, PTQ. We can also use that A - [P, @; PTQ] = [P, Q; 0, /\PTQ] to recover that

0 _ a0 ot
8p,0 =N " &po

Finally we remark that there are two special cases where we can do a biextension expo-
nentiation faster using the cubical arithmetic.

The first one is when ¢ = 2", in which case the biextension exponentiation consists
entirely of biextension doublings, so we can use a cubical biextension ladder consisting
entirely of cubical biextension doublings, i.e. a cubical doubling and a cubical differential
addition at each step.

The other more subtle case is for self pairings, i.e. when we want to compute gl*,lpe . Since
we are allowed to choose any gp p above (P, P) for pairings, we will take one of special form,
given by [P,P,0,2P]. In other words, we take for 2P the cubical doubling 2P rather than an
arbitrary cubical points. Changing P to A - P changes 2P to A* - 2P, hence gppto AZ. gp.p-
In other words, these special ¢p p form a torsor under the squared action of G,,, rather
than under G,,,. Then we can compute ¢P via a cubical ladder, which involves one cubical
doubling and one cubical differential addition by step, to get g;lpe = [P,P,0,(P]. Here it is
important to use the cubical arithmetic.

A last remark is that when using the cubical representation to compute different pairings
e(P, Q;) with the same base point P, i.e. biextension exponentiation of elements of the form
gp,0, = [P, ’Q\;; 0,P TQI-], then for the representation of each gl*)lQ@l = [(D, ’Q\;; 0, QPTQ,-],

we can of course use the same (P and share the computation. This is also a well known pairing
trick.

4.5. The affine lift representation. To use the cubical arithmetic in order to obtain the biex-
tension arithmetic in order to obtain our pairings, we need to find a convenient representation
of our cubical points P.

In this section we introduce the affine coordinates representation (or affine representation
for short). Fix X3, ..., X,,, € T'(L) global sections of L = Q4 (D). We have a partial map
p:A— P71, P (X{(P) : -, X,,(P)), which is not defined at the base points of L.

The element X;(P) is in the fiber L(P) of the line bundle ., and p gives a rigidification
O4(P) = k(P) - L(P). Using this isomorphism, we obtain an element Xl-(ﬁ) € x(P).
This allows to interpret X; as an affine coordinate on cubical points.
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More explicitly, our cubical point P can be lifted to a local trivialisation ¢p of L at P,
which is the same as a choice of a local generator s at P. So we can write X; = s; - s, for
some s; € (4. We define the affine representation of our cubical point to be F(P) =
(X3 (D), Xm(P)) = (51(P),...,s,,(P)) € A™;itis easy to check that it depends only on
P. If P is not a base point, ¢(P) is an affine point lying above the projective point ¢(P).
Furthermore, in this case not all s;(P) are 0, and our local section s is completely determined
from any non zero coordinate of $ (P): Pis completely determined by (P, ¢ (P)), or even
by (P, X,-(ﬁ)) for any i such that s;(P) # 0. If furthermore .L is very ample, P is completely
determined by ¢(P), so Pis completely determined by @ (P), in which case we will often
denote it by P too.

We thus obtain a convenient representation as affine points of the cubical points. For
instance, in Theorem 4.11, the value A; p is simply given as A; p = X;(tP + Q) /X;(Q)
for any i such that X;(Q) # 0. Furthermore, if D is represented by (X; (P, ... X (P)),
the Galois action o (P) of a Galois element ¢ on the rigidification P of .L at P is given by
o(P) = (c(X1(P)), ..., 0 (X, (P))). If P € A[L], and (P,gp) € G(L) is an element of
the theta group above P, then the action of the theta group element gp on P is given by
gp P = ((gp- Xl)(p), v (8P Xm)(ﬁ)) where gp - X; is the natural action of G(.L) on
sections X; € T'(L) from Equation (2).

We will call the cubical doublings, differential additions and three way additions in the
affine lift representation of cubical points the affine doublings, affine differential additions
and affine three way additions respectively.

Remark 4.15. Thereis a global G,,,-ambiguity when using affine coordinates X; to represent
cubical points. We'll illustrate this in the case of an elliptic curve: take a short Weierstrass
equation y?> = x3 + ax + b, with associated Weierstrass coordinates x, y. The projective
equation is Y2Z = X3 + aXZ? + bZ3, and fixing the coordinate Z € I'(3(0g)) fixes X, Y
via X = xZ,Y = yZ. However, the projective curve equation does not change if we replace Z
by AZ, so we could also work with AX,AY, AZ. Now, via the affine representation of cubical
points by the coordiantes X, Y, Z, there is no difference between keeping the same cubical
points and changing the coordinates X, Y, Zto AX,AY, AZ, or keeping the same coordinates
X, Y, Z and changing all cubical points P into AP.

Let L = Og((0g)) be the line bundle associated to the canonical principal polarisation
on E. We will often say that we normalize 0 so that (Z/(x/ y)) (0) = 1. This means that if we
lift O to a local trivialisation of L at 0 £, L. a local choice of section s; the section Z € T'(.L)
can then be written locally as Z = gs for some function ¢ € k(E), and we require that
(g/(x/y))(0) = 1. We can thus interpret this normalisation condition in two different ways:
the first one is to fix a global section Z, and then ask to take 0 such that (Z/(x/y)) =1
the second one is to fix 0 first and then take Z such that we have this same equality.

4.5.1. Cubical functions. Let [Py, P,, P5,P4; Oy, Q,, Q3, Q4] be cubical points in Riemann
relation. By definition and Proposition 4.1 they define a canonical function <, which only
depends on [Py, Py, P3,Py; Q1,Q2,Q3, Qul.

We can recover 7y in terms of the affine coordinates X; as follows. Let D, be the divisor of ze-
roes of X;; since X; € T'(.L) is a global section, the associated line bundle O 4 (D;) is isomor-
phic to L and all the D; are linearly equivalent. Since the points [P, Py, P3, P4; Q1, Q2, Q3, Q4].
are in Riemann position, they define canonical functions -; for each i. And we have, by
X;(P1)X;(P)X;(P3)X;(Py)

definition of th affine coordinates, ,;(0) = ——= — — =,
Xi(QXi(Q2)X;(Q3)X;(Qy)
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Take R € A, and consider the points [P; + R, P, + R,P3 + R, P, + R; Q1 + R, Q, +
R, Q3+R, Q4+R], they are still in Riemann position, and the associated functions are simply
the t57;. Soif [P; + R,P; + R,P5 + R,Py + R;Q; + R, Q> + R, Q3 + R,Qy + R] are in
Riemann position, we obtain:

X;(P1 + R)X;(P; + R)X;(P5 + R)X;(P; + R)
X:(Q7 ¥ R)X;(Q5 + R)X:(Q3 ¥ R)X;(Qz + R)

We can go further: fix cubical points 0,7, @, PTQ, since the cycle Z = (P + Q) +
(0) — (P) — (Q) satisfy s(Z) = 0, these cubical points defines uniquely a function f; as
in Section 4.2.5, which in this case is a biextension element gp o € X in the biextension
associated to L.
To each coordinate X;, with zero divisor D;, we let ¢; p ;; be the function with divisor
D;pyo — D;p — D; g associated to gp o via the isomorphism X ; =~ X .
IfR € A, we can fix arbitrary cubical points R, K + P, R + Q, and look at the unique cubi-
calpoint R + P + Q given by the three way addition, i.e. such that [R + P + Q,R,P,0;0,P + Q, R+ Q, P + Q]
are in Riemann position. By Theorem 4.8 combined with the same reasoning as above, we
have

7:(R) =

X;(P+Q+ R)X;(R)
X, (P¥R)X;(T+R),

8ip,Q(R) =
and so
X;(P +Q + R)X;(R)X;(P)X;(Q)
X;(P+R)X(Q+R)X;(P+Q)X;(0)
In particular, g; p  does not depend on the choice of R,R+P,R+Q,aslongasR+P + Q

is computed through a three way addition, as can be checked directly by homogeneity.
This allows to write the genuine function g; p ; as a product of “cubical functions”

8i,p,o((R) = (0)) =

If T € A[D;], we have also seen in Section 4.2 how a choice of cubical point T gives a
canonical theta group element (T, g; 1) € G(D;). It can be described as follows: if R € A,
take an arbitrary cubical point R, and let R + T be given by the action of T on R. Then by
definition of this action, g; 7(R) = Xi(Rf:T) /X; (R).

For a degree 0 cycle Z such that s(Z) &€ Ker ® ¢, and a cubical lift 7 of Z, we can combine
the two methods to iteratively reduce Z to a cycle s(Z) — 0 and express the function fras
product of cubical functions.

4.5.2. The affine cubical representation as evaluation of cubical functions. Let (P,Q,¢p o) €
Xp be a biextension element. In the evaluation representation, we represent ¢p  via (the
extended value) ¢p 5(0) at the base point 0. Let X, ..., X,,, € I'(D), and assume that X;
has D for divisor of zeroes, X; has D; for divisor of zeroes, with D; = D + div(X;/X;). We
have a function g; p 5 = gp,Q;(—i((- +P+Q)+ ()= (-+P)—(-+Q)) coming from the
biextension isomorphism Xp =~ Xp (see Remark 3.8). We can then define a multievaluation
representation, representing ¢p ( via the (extended) evaluations g; p 5 (0). It is often the case
that the functions X; are determined from X; via translation by some elements of torsion T
(or more precisely via the action of some (T, g7) € G(D) on Xj in the theta group). This is
for instance the case for theta functions of level n (where the T are points of n-torsion), or for
the Montgomery model of the Kummer line where T = (0: 1) and g7 - (X, Z) = (Z, X).
In this case the multievaluation representation is simply the evaluation of ¢p ; not only at
the base point Ry = 0, but also at the points Ry + T.



Fast pairings via biextensions and cubical arithmetic 37

Now assume that we are given a cubical representation gp,0 = [F, Q; 0, PTQ]. By Sec-
tion 4.5.1, given R € A, and any choice of R above R, K + P, R + Q, computing P + Q + R
via a cubical three way add, we have

Xi(P+Q+R)X;(R)

X,P+RX;(Q+R)

Now, although the function g; p ; is a genuine function on our abelian variety, its indi-
vidual members R X; (P +’(§/+ R), Xi(T{), X,-(PTR), Xl-(QTR) only make sense as
virtual cubical functions, whose associated divisor of zeroes are t}, »D;, D;, tpD; and t5)D;

respectively. And the affine cubical representation is precisely the evaluation of these virtual
functions at 0.

(17) gi/P,Q : R

When doing a biextension exponentiation to compute gl*jlé, in the multievaluation repre-
sentation we obtain functions g; ¢p o such that by Porism 3.10 g; ¢p o/ gf p,o 1s the function

fi o p evaluated on the cycle (x+Q) — (x), wheref;  p has for divisor D; jp+ (£~1)D;—{D,; p.
The multievaluation representation is given by the evaluation of the functions g; ¢p o at 0,

and so gi’gp,Q(O)/gE/P,Q(O) is the value of f;  p at the cycle (Q) — (0).
Now, the cubical representation also allows to write
X;(tP + QO + R)X;(R)
(18) Liwp,0oR) = — ——.
X;(P + R)X;(Q+R)
In particular, we have that the evaluation of f; ; p at the cycle (R + Q) — (R) is given by

(19)

X,(P Q0 + R)X,(R) (Xi(PTR)Xi(QTR) )“
X, WP+ RX(@+R) \X;P+Q+RX;[R) )’
and if P € A[€D], and P is an arbitrary cubical point above £P,

X;(—=0P - P + Q + R)X;(R) (Xi(PTR)Xi(QTR) )?‘
X(~P P RX;(Q+R) \X,P+Q+RX;R) /)

And, although the function g; yp (5 is @ genuine function on our abelian variety, its in-
dividual members (R, P+ R, + R) — X;({P + Q + R), X;(R), X;({tP + R), X;(Q + R)
only make sense as cubical functions, with divisors of zeroes given by tfp +QD1-, D;, t;PDl-
and {7, D; respectively.

Thus the cubical representation is a way to decompose the functions g; ¢p ; as a product
of cubical functions, and the affine lift representation is simply the evaluation of these cubical
functions at the cubical point 0, hence is a way to decompose the functions evaluations
ip,0(0) as a product of cubical evaluations.

And Porism 4.12 shows that the cubical arithmetic is an efficient way to embed the Miller
functions f; p in the affine coordinates of {P, (P + Q. Explicitly, evaluating Equations (19)
and (20) at 0:

(20) fip, ,(R+Q) = (R)) =

Porism 4.16. Let D; be the divisor of zeroes of X; (since X; is a section of D, D; ~ D).
Let f; o p be a function with divisor D; ip — D; p. Then the function f; , p evaluated on the
X,(PTQX,(®) ( X,PX/D) )e
X@P)X;Q \ X{(P+Q)X;(0) )
X,PPEQX® [ XPX@D
X;(~ PP X;(Q) <Xi<P¢Q>xi<6>)

cycle (Q) — (0) is given by

IfP € A[D), fip, ,((Q) — (0)) =
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Remark 4.17. When using Porism 4.16 and Theorem 4.11 to evaluate the extended Tate
pairing as in Remark 2.10 when D = mD1, one need to be careful about the choice of the
coordinate X;.

Indeed, using X; amount to computing the extended Tate pairing associated to D;, but we
have seen in Remark 2.10 that for the extended Tate pairing we need to be sure to choose D;
such that D; = mD, with D] rational. This won't be the case in general for the zero divisor
D’ of an arbitrary section X € T'(O4 (D)).

On the other hand, if X; has zero divisor D, (or mD? ), then we have seen in Remark 2.10
that we do not need to use the correcting factor gle,’Q to correct the monodromy information
Ap when gp o comes from a 1m-th tensor power of a rational biextension element in X, . An
easy way to ensure this is to start with gp o = [P, 3,0, P + Q] where the cubical points are
normalised via X (P) = X1 (Qv) =X; 0) = X3 (PTQ) = 1. Indeed, if Y7 is a section of
O4 (DY), then X7 = YJ" is a m-th power. Our X is of the form X for some scalar factor,
but this scalar factor gives the same gp by Lemma 4.7.

We can give the following philosophical motivation for using the affine representation
to compute pairings. By Theorem 4.11, we need to compute cubical points of the form
{P, P ¥+ Q. In particular, we need to compute the standard points P, (P + Q. For this last
computation, we want to use projective coordinates to avoid divisions. But for the algorithm,
the way we represent the projective coordinates (Xy : ... : X,;,) is via affine coordinates
(X4, ..., X,;;) anyway. If the way we do the projective arithmetic in terms of affine coordinates
is already close to the cubical arithmetic, we can easily correct our algorithm to do a cubical
exponentiation rather than a projective point exponentiation. Our exponentiation (P, ¢P + Q,
then gives “for free” our cubical points {P, £P + Q, hence our pairings. Now in principle,
there is no reason that the random affine arithmetic we use when computing £P, {P + Q has
any reason to be close to the cubical arithmetic; after all at each step we could multiply all our
coordinates by some random constant since this does not change the projective point. But in
practice, we use efficient algorithms (which do not involve doing random multiplications
at each step). And the amazing thing is that the algorithms we already use, at least in the
Theta and Montgomery models, are almost the correct cubical one already, as we will see.
One explanation for this is the unicity of biextensions from Theorem 3.1, it appears that
efficient formulas are sufficiently functorial in nature to satisfy the biextension arithmetic, or
are close to.

In particular, in Section 5, we will look at the cubical representation on a Kummer line
E/ + 1 resulting from affine lifts of sections X, Z € I'(2(0g)). A biextension element will
be given by [P, 3,0, P + Q] and the biextension exponentiation will be determined by (P,
(P + Q which are both described by two affine coordinates.

In Miller standard algorithm, one also compute the multiples {P of P (projectively, so
with two projective coordinates (X (¢P) : Z({P)) if P € E/ + 1 is a Kummer point), and
store the Miller evaluations f; p(Q) as a numerator and denominator separately, i.e., as an
element of P1.

In fine, the affine lift representation is very similar: we store X ( (P), Z({P), X (EP’TQ),
Z({P + Q) as affine coordinates, in a way such that f2(0,),,p 1s encoded by (see Porism 4.16)

— ~ ~ ~ [
B _ ZuPFQ)Z©) [ Z(P)Z(WQ) . .
f2<05),€,P((Q) 0)) = 22D (Z(P?Q)Z(()) ) . A word on how to interpret this last

equality. The function fZ(OEM, p has for divisor 2(¢P) +2(£—1) (0g) —2L(P), so its evaluation
on the cycle (Q) — (0) gives a pole of order 2({ — 1) at 0. On the other hand 0 = (1 : 0) so
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Z(0g) = Ois a zero of order two, and the right hand side also gives a pole of order 2(¢ — 1)
at 0. The equality above makes sense by dividing both sides by ngée_l) for any uniformizer
7o, at O; for instance divide both members by VARES

4.6. Cubical arithmetic and pairings on Kummer varieties.

4.6.1. Biextension additions on Kummer varieties. Let (A, L) be a principally polarised
abelian variety, if .L is indecomposable then .L? gives an embedding of the Kummer variety
A/ +1.

Let (Xq, ..., X,;) € T'(L) be the global sections of .L (we will call these level 2 coordi-
nates). We then have by Section 4.5 the affine lift representation P= (X4 (P, ..., X (P)).
The projective coordinates (X7 (P) : ... : X,,,(P)) only allows to recover +P, so in this case
our affine lift representation for P only recovers +P.

However, when using the affine lift representation for the cubical points in the cubical
biextension representation gp o = [P,0;0,P + QJ, then by [ ] the points P, Q are
determined up to the same sign. The reason is that, if Q is not of 2-torsion, the map A —
A/ +1xA/+1,P— (£P,+(P + Q)) is an embedding (and if both P, Q are of 2-torsion
we can use the action of the theta group G(/L?) instead). Since pairings are bilinear, this
representation of ¢p ; is enough to recover the pairings e(P, Q) exactly.

We just need to explain how to do a cubical biextension exponentiation using affine
coordinates of level 2. The cubical ladder from Algorithm 4.2 works as is; we just need affine
doublings and differential additions that lift the standard doublings and differential additions
on the Kummer variety to the cubical arithmetic. However, for the cubical double and add
algorithm from Algorithm 4.1, the algorithm requires a cubical biextension addition, which
requires to lift an abelian variety standard addition.

We cannot do a standard addition on a Kummer variety. However, in the context of a
cubical biextension addition, we are given representations gp, o = [P;,Q;0,P; + Q] and
8P, Q0 = [P5,Q;0,P; + Q] and we want to compute a representation 8p,,0 *18P,0 =
[Py + P,,Q;0,P; + P5 + QI. We note that our affine lift representation, when interpreted
as projective coordinates, give us the coordinate of +P1, +P,, +Q, +(P1 + Q), +(P> + Q)
on the Kummer variety. This data is enough to compute a compatible addition +(P; + P5) =
CompatibleAdd(+Pq, +P5; +Q, + (P71 + Q), +(P5 + Q)) as explained in [ ]. Take any
affine lift P{ + P, of +(P; + P,), and then proceed to compute P; + P, + Q via a three
way addition like in the usual case. This gives Algorithm 4.3.

We obtain the following algorithm to compute the pairings associated to .L? on an abelian
variety A. Let P, Q € A, compute P + Q € A, and then compute the projective coordinates
X;(P), X;(Q), X;(P + Q) to get the points +P, +Q, + (P + Q) on A/ + 1. Take arbitrary
lifts of these projective coordinates to get a representation of gp 5 = [P,0;0,P + Q1.

The pairings then requires to compute biextension exponentiations which can be done
using Algorithms 4.2 and 4.3, and eventually the action of the theta group G (.L?) (to compute
pairings with € even) or the action of 7z, (for the optimal Ate and optimal Ate pairings) which
can be expressed naturally as in Section 4.5 on the level 2 affine coordinates X;.

4.6.2. Pairings on Kummer varieties. The computation of +(P + Q) (via its coordinates
X;(+£(P + Q))) requires to start with P,Q € A. If we want to compute pairings which
genuinely lie on the Kummer variety, we then have only +P, +Q. The best we can compute
from these points is the degree two étale subscheme + (P 4+ Q) of A/ 4+ 1. This subscheme is
isomorphic to Spec R, with R = k[X]/93(X), P a polynomial of degree 2. Typically, if X;
is a separating coordinate, we can take P(X) = (X —= X7 (P + Q) (X — X3 (P —Q)) and
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Input: abiextension element gp 5 = [P,Q,0, P+ Q] represented by cubical points
Output: cubical points (P, (P + Q such that gl*,lQe = [¢P,0,0,tP ¥ Q]
> For each bit b; of { from left to right (skipping the first one), given a cubical representation
nP,nP + Q, of g;lél , where 7 is the current truncation of ¢ on the leftmost bits, do a
cubical biextension double:
a. 2nP + Q = DiffAdd(nP + Q, nP, Q);
b. 2nP = Double(nP);
And if b; = 1, also do a cubical biextension addition:
a. Compute (2n+1)P = CompatibleAdd(2nP, P; 2nP+Q, P+Q) and take an arbitrary
cubical lift (271 +1)P of (21 + 1)P.
b. 2n + )P + Q = ThreeWayAdd(2nP,P,Q, P + Q,2nP + Q, 21 + 1)P);

ALGORITHM 4.3. Biextension exponentiation on Kummer varieties via
cubical double and add

express the isomorphism between Spec R and + (P + Q) by giving linear relations between
X;(P + Q) and X;(P + Q). One can then consider the abelian and Kummer schemes
Agr/R, (Ar/ + 1)/R over R. The coordinate X mod ‘B3 encodes P + Q and P — Q. More
formally, we have a canonical R point Spec R — A/ + 1, and as, eventually over a degree 2
extension k" of k, R splits as Ry, = k' @ k', the isomorphism Spec R = + (P + Q) splits as
Speck’ & Speck” =~ +(P + Q) x +(P — Q), so the canonical R point splits as the point
+ (P + Q) and the point + (P — Q). Anyway, working over R rather than over k, we can do
our pairing computations as before, except that in the end we obtain a representation of the
degree two scheme e(P, Q)*! of G,,,. Typically this representation is given by a degree two
polynomial Q(X) = (X —e(P,Q))(X —e(P,Q)~1) = X% —(e(P,Q) +e(P,Q)"HX +1,
and so we can recover the trace (e(P, Q) + e(P, Q)~1), which we will call the symmetric
pairing of P, Q.

Alternatively we can see e(P, Q)*lasa point of G,,,/ + 1, and ifxt' € G,,/ + 1, the
trace x¥! — x + 1/x is a convenient representation of x*!. We can still do arithmetic
on G,/ + 1 (see [ , § 2.12.2]), notably compute exponentiation via squarings and
differential multiplications. This allows us to compute reduced symmetric pairings from non
reduced symmetric pairings. This strategy to compute pairings is well known, see [ ] for
Kummer lines and [ ] for the case of Kummer varieties in the theta model.

4.7. Analytic cubical points and analytic theta functions. Our goal is now to find formulas
for the cubical arithmetic using the affine lift representation. It will be convenient to work
out formulas over C.

Since we know that the cubical arithmetic is algebraic, working over the universal abelian
scheme there certainly exists algebraic formulas over C. By standard arguments (see [ ,
§ 2.3.6]), if we find through analytic means algebraic formulas defiend over @, we know that
they give the correct arithmetic formula over any field k of characteristic p, as long as the
formulas have good reduction modulo p.

Now, from the algebraic Riemann relations on line bundles from Proposition 4.1, taking
sections s; of L we know that there should exists linear realations between suitable translated
tensor products of the s;, i.e. Riemann relations on sections. These have been worked out in
the case where the s; are the algebraic theta functions by Mumford in [ ,P-333-335].
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Now let A/C be an abelian variety, it is known that it is a (polarisable) torus A = V/A
with V a C-vector space of dimension g, and that the analytic addition law on V =~ C&
induces the algebraic addition law on A. Fix a very ample line bundle .L on A. It is also
known that there is a theory of analytic theta functions on A with respect to ., which are
given by analytic functions on V' [ ; 1.

Given these theta functions 6;, we have two representations of a point P € A. First we
have the projective representation: take any zp € V above P, and let 8(P) = (01(zp) : ... :
0,,,(zp)). The theta functions are automorphic with respect to A (with the same factor of
automorphy), so changing zp does not change the projective point 8(P). But we also have an
affine representation 6(zp) = (0,(zp), ..., 0,,(zp)), which is an affine point above 6(P).

We remark the similarity with the discussion of Section 4.5. In fact, since V is simply
connected, the pullback of any line bundle .L on A to V is trivial, so essentially the choice of
zp above P induces a choice of rigidification of .L at P.

If we know the projective points 8(P), 8(Q), we can compute 8(P + Q). However, if we
know 6(zp), 0(z(), we cannot recover the analytic addition 6(zp +2zg). However, we can use
the analytic Riemann relations | ], so that whenever we have [zq, 25, 23, 24; z’l, Z5, Zg, ZZL]
in Riemann position, and we know all but one of the 6(z;) we can recover exactly the last
one. In particular, as in Example 4.3, we can do analytic differential additions and analytic
three way additions.

Now the analytic Riemann relations on analytic theta functions are exactly the same as
the algebraic Riemann relations on algebraic theta functions. Since the analytic Riemann
relations are induced by the analytic group law on V on one hand, and the algebraic Riemann
relations give the cubical structure, we deduce that the analytic addition law on V induces the
cubical algebraic structure. See also [ , - 41, 42]. In fact Breen uses the algebraic cubical
theory to give an alternative definition of algebraic theta functions compared to Mumford
(which uses the Heisenberg group representation and a choice of isomorphism between the
Heisenberg group and a theta group).

In summary, the cubical arithmetic encodes the algebraic information which can be
extracted from the analytic group law of V above the algebraic group law of A. Analytically,
a cubical point P corresponds to an analytic point zp above P, and cubical arithmetic like
mP + nQ (when we have enough information to compute it) corresponds to the analytic
point mzp + nzg. This allows us to naturally check the various compatibility relations on
the cubical arithmetic by checking it through the analytic group law.

The first consequence, is that the affine version of the theta Riemann relations, since they
are over C given by the analytic theta Riemann relations coming from the analytic group
law, give explicit formulas for the cubical arithmetic expressed in terms of affine lifts of
theta points. In particular, all the arithmetic on affine lift of theta points as developed in
[ ; ; ], was actually a cubical arithmetic in disguise, as should be clear when
comparing Theorem 4.11 with [ ; ]. This explain how to do the cubical arithmetic
in theta models of abelian varieties. This allows to have a nice intuition on the operations
allowed under the cubical arithmetic: any algebraic relations that can be derived from the
transcendantal addition law z; + z; + -+ + 2 via the analytic theta functions (so for instance:
we cannot recover the 0;(z1 + z,) from the 6;(z1), 6;(z5), but we can is we also know the
0;(z1 — z5)) can be rewritten as some cubical operation.

Furthermore, the automorphic factor associated to theta functions gives an explicit trivi-
alisation of the theta groups on A = V/A pulled back to V, and of biextensions on A x A
pulled back to V' x V. This allows to give an analytic proof of the link between cubical points
and biextensions.
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4.8. Cubical arithmetic on elliptic curves and Kummer lines. In this section, we give
explicit formulas for the arithmetic of cubical elliptic points in Sections 4.8.1 to 4.8.3, and
for cubical points on elliptic Kummer lines in Section 4.8.4. Finally in Section 4.8.5 we make
the link between elliptic nets and cubical points.

4.8.1. Weierstrass coordinates. We will use Section 4.7 to derive the cubical arithmetic of an
elliptic curve (E, (Og)) in Weierstrass equation y? = x3 + ayx? + azx + ae.

It is well known by Riemann Roch that the line bundle .L associated to (O) has one
global section Z. The line bundle .L? has two sections, X5, Z, with Z, = Z2. And finally
the line bundle .C3 has three sections X3, Y3, Z3, with X3 = X,Z,,Z = Z3.

To simplify notations, we let X, Y, Z = X3, Y3, Z3. We can work on the elliptic curve via
the projective coordinates (X : Y : Z), or via the affine coordinates x = X/Z = X,/Z,,y =
Y /Z which are defined everywhere except at Of.

Since Of is of multiplicity 1 in the divisor (Of), by the proof of [ , Proposi-
tion 2 p.307], we have that Z; (—P) = —Z;(P). So Z; is odd, and since x is odd and y
even, X is even and Y is even.

The affine representation of a cubical point Pabove P = (X(P) : Y(P) : Z(P)),
with respect to the divisor D = 3(0g), then corresponds to a choice of affine lift P =
(X(D),Y(P), Z(P)) above the projective point P.

If we want to work with the cubical arithmetic associated to (Og) (hence a principal
polarisation), since it is not very ample, to represent a cubical point P, we need to fix both a
representation of P itself, e.g. via the Weierstrass coordinates (X (P) : Y/(P) : Z(P)) and a
choice of Z; (P), which we will denote by Z, (P). Our representation is thus P = (P, Z4 (P)).
It is well defined except when P = Of because the neutral point is a base point of (Og) and
Zl (OE) =0.

Remark 4.18. Asdiscussed in Remark 4.15, we want to normalize O such that (Z1/(x/y)) 0) =
1. With this normalisation, we have X, (0) = (X5/(Z1/(x/y))?)(0) = (Xpx?/(Z3y*))(0) =
(**/y*)(0) = Land Y5(0) = (Y3/(Z1/(x/y))?)(0) = (Y3x*/(Z3y*))(0) = (3 /y*)(0) =
1.

We will call sections of the divisor 11(0f) coordinates of level 7, so for instance Z; is of
level 1, X,, Z, of level 2, and X3, Y5, Z of level 3. To specify a cubical point P with respect
to the divisor n(0g), we need to specify P using some projective coordinates of level m:
(X;,,i(P)), and one or several affine coordinates of level n: Xn,i(ﬁ). If m = n, then the
projective coordinates are subsumed by the affine coordinates, but we can take m different
from n.

For instance the representation P = (X(P),Y(P),Z(P)) uses level 3 affine coordinates
(so gives cubical points associated to 3(0g)); and our normalisation of the neutral point
is0 = (0,1,0). The representation P = (X(P) : Y(P) : Z(P)), Zq (D)) uses level 3
projective coordinates with a level 1 affine coordinate (so cubical points associated to (Og)).
This times, Z; (0g) = 0 so to define our neutral point we need to add the extra condition
that (Zy/(x/y))(0) = 1.

In Section 4.8.4 we will use level 2 affine coordinates P = (X5 (P, Zs (P). Projectively,
these only allow to recover (X, (P) : Z,(P)), i.e. x(P), so they cannot distinguish between
P and —P. Our neutral point is 0=(1,0).

On a twisted Edwards curve, the completed Edward coordinates are given by {(X :
Z),(Y : T) € P x P! | aX?T? + Y?Z? = Z2T? + dX?Y?}, and the Segre embedding
PlxPl 5 P3 (X:2),(Y:T)» (XT:YZ:ZT : XY) gives the extended Edwards
coordinates (which are of level 4) | ,§ 2.7]. Let M be the Montgomery model which
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is birationnally equivalent to E, and X, Z, its level two coordinates, and T = (1 : 0) the
canonical point of 4 torsion on the Kummer line. Then up to a linear change of variable, the
completed Edwards coordinates correspond precisely to the embedding M — P! x P!, P —
(Xp(P) = Zpg(P)), Xpg (P + T) : Zpg(P + T))). This was first remarked (implicitly)
in [ ; , §8.1]; see also [ ,$3]and [ ] for generalisations to higher
dimension. This means we could use a mix of affine level 2 and projective level 4 coordinates
to describe cubical points of level 2 in A2 x P! via P = (X (P), Zy(P)), (Xpy(P+T) :
Zp(P +T))), and compute pairings using a mix of Kummer line cubical arithmetic as in
Section 5 and Edwards additions. We leave that for future work.

4.8.2. Analytic cubical elliptic points. Analytically, the Weierstrass sigma function ¢ is a theta
function (up to some exponential factor) which has zeroes of order 1 exactly at the lattice A,
it can thus play the role of our Z; (see Remark 4.19). It is also well known that analytically,
x=0y=g"

The cubical arithmetic with respect to ¢ is then given by the Frobenius Stickelberger

relations (see [ ,Lemma 5.1.3; , Exercice 6.3;  Eq.(3.13.4) p 42)):
c(z+w)o(z—w) = o(w) — p(2)
O'(Z)ZU(ZU)Z =p 1Y
LZZ) — ’(Z)
0'(2)4 - p
T +y+2)0®oye@ _ -1 1 ggx; g:Ex; .
ca+yoy+oE+ 2 | @(Z) @,(Z) O IO G

These allows to compute the cubical doubling, cubical differential additions and cubical three
way additions on a Weierstrass model. There also exists Frobenius-Stickelberger relations
for multiway relations (which allows to compute them directly rather than through three
way additions), but we won’t need them.

Remark 4.19 (The normalised neutral point). Our cubical analytic neutral point 0 is the one
corresponding to 0 € C. The normalisation is given by (0 /(/%"))(0) = —2by| ,
Lemma 1]. Indeed (902)(0) = 1 and ('¢>)(0) = —2. But the Weierstrass equation is
P2 =3 — 9> — g3, so for a Weierstrass equation of the form y?> = x3 + ax + b, via
xX=0,y=¢"/2 0 corresponds to the normalisation (o /(—x/y))(0) = 1, which is the
opposite of the normalisation we use in Remark 4.15 (alternatively: ¢ = —Z,).

4.8.3. Algebraic elliptic cubical points. Our analytic cubical laws translate in the following
algebraic law (taking into account the change of variable from Remark 4.19 between analytic
Weierstrass coordinates and algebraic Weierstrass coordinates): given P = (x(P), y(P),Z, (P,

Q= (x(Q),y(Q),Z1(Q)and P=Q = (x(P — Q),y(P — Q), Z1 (P = Q)), we have the

cubical doubling
2P = (x(2P),y(2P), Z1 (P)*2y(P)),

and the cubical differential addition is PTQ =x@P+Q),yP+Q),2Z; (P+Q)) with

ZIP+QZ(P = Q) = Z1(P)?Z1(Q)*(x(Q) — x(P)).
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And the three way addition reads:

Zi(P+Q+RZi(P)Zy(@QZi(R) _ . ;C((g ]]//((g)) 1
ZeronarnnrEn | 19 V() (x(Q) — x(P))(x(R) — x(P))(x(R) — x(Q))

_ Ip,o(R)
—(x(R) = x(P)) (x(R) — x(Q))”
where Ip  : y — ax — B is the equation of the line going through P and Q.

Finally, for general cubical points in Riemann position [Py, P,, P, Py; O, Q,, O3, O41,
if welet Py = P} + P}, P, = P} — P5, P3 = P5 + P}, Py = P; — P}, then 2P} = Py + P,,
2P, = Py —P,,2P; = P3+P4,2P) = P3—P4,and wehave: Q; = P;—P5,Q, = P5+P5,
Q3 = P| = P}, Q4 = P + P}. We can then use the cubical differential additions above to
obtain
Z1(P))Z1(P))Z1(P3)Z1(Py)  (x(Ph) — x(P))(x(Py) — x(P3))

21(QDZ1(QZ1(Q3)21(Qy)  ¥(Py) = x(P)) (x(P)) —x(P))”

For the reader who do not like analytic arguments, let us give a purely algebraic proof of
the cubical arithmetic for elliptic curves in Weierstrass form. Recall from Remark 4.15 that
for an elliptic curve in Weierstrass form yz = x3 + a,x% + ayx + ag, we take 0 corresponding
to the uniformiser 71y = x/y, i.e. (Z1/(x/y)(0) =1
Zy(P+Q+R)Zy (P-Q+R)Z,(R)Z; ((R) _
Z1(=Q+R)Z1 (Q+R)Zy (P+R) Z; (P+R)

By Example 4.3 and Section 4.5.1, for a differential addition, we have

_ 800
7 (R). Here by Example 4.3,y = To o=
For a generic Q, we can take ¢ _ o = x — x(Q) and so y(R) = %xe()Q) We also

have Z1(—Q) = —Z;(Q) and even Zl(—Q) = —Zl(Q). 5

Since our choice of base point evaluation to o represent cubical functions is 0, we have
ZiP+QZ1(P=Q) = Z1(P)?Z1(Q)Z1(-Q) Z1(0)~ 27<OE>

And since Zl/(x/y) (0) = 1, we have ('y/ZZ) ) = (ry /xz)(OE) Hence, we have
Zi(P+Q)Zy (P =Q) = Z;(P)*Z1(Q)? - —(7y?/x*) ().

The numerator of y evaluated at R = O gives x(P) — x(Q). The denominator of 7y multi-
plied by (x/y)? is x(R)3/y(R)? — x(R)%x(Q) /y(R)?. The term x(R)3/y(R)? is equal to 1
at R = O because of the curve equation, while the second term gives 0. So (’}/y2 /x2)(0 E) =
x(P) —x(Q). In the end, we have Z; (P + Q)Z1(P — Q) = (x(Q) —x(P))Z,(P)2Z;(0)?,
as expected.

We let the reader work out the case of doublings and three way additions.

4.8.4. Cubical arithmetic on Kummer lines. We could use Z, = Z% to compute the cubical
arithmetic with respect to the divisor D = 2(0g): we would representﬁ by (x(P),y(P), Z% (P)).
This combines level 3 projective coordinates with one level 2 affine coordinates.

Instead, we will use level 2 affine coordinates only, at the cost of moving to the Kummer
line. The projective coordinates with respect to 2(0 E) are (X2 Z5), and so the associated
affine representation from Section 4.5 is P = (XZ(P) ZZ(P)) = (x(P)Zz(P) Zz(P)) It
is enough to recover P up to a sign, hence we can interpret this latter representation as a
cubical representation over the Kummer line.

The cubical arithmetic in this affine representation then becomes, for cubical doublings,
2D = (x(2P)Z2(§T3), Z2(§TJ)) with ZZ(QTJ) = 4y(P)2Z(ﬁ)4, and we can use the Weier-
strass equation to express y(P)2 in terms of x(P). And the cubical differential addition is
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P40 = x(P+QZ(P+Q), Zo(P+ Q) with Z,(P+ QI Zo(P = Q) = Zo(P)?Zo(Q*((Q) -
x(P))“.
The three way addition is more complex. First from x(P7), x(P5), x(P1 + Q), x(P5 +
Q) we can use a compatible addition to recover x(Pq — P,) or x(P; + P, + Q), and
then use a projective differential addition to recover x(P; + P,). Now we can combine
the level 1 cubical differential additions formulas for Z; (P; + P, + Q)Z;(P; — P, + Q),
Z1(Py + Py + Q)Z1(Py = P; + Q),Z1 (P = Py + Q)Z1 (P, = P1 + Q),and Z; (Py + P»)Z;(Py — P,),
to obtain:

Zy(PL ¥ Q1 Za(Py ¥ Q) Zy(P1)Zy(Py) (x(Py) — x(Py + Q) (x(Py) — x(Py + Q)
Zy(Py = Pp)Z5(Q) (x(P1 = Py) —x(Q))

_ P2y (Pr+Q) = X (Pr + QZ5(Py)) X (P Zy (P + Q) — X (P + Q25 (PY))

(Xp(Py = P2)Z5(Q) — Z(P{ = Pp)X2(Q))

Since compatible additions give x(P; + P, + Q), knowing Z,(P; + P, + Q) is enough
to recover X,(P; + P5 + Q), hence P; + P, + Q. (We will see a more direct formula
for X, (P; + P, + Q) in the Montgomery model in Section s5.2). Likewise, we can com-
pute Py + P, = DiffAdd(P;, P, P; — P5), then the biextension element corresponding to
[Pl,rpz, Q,' 6, Pl +/?2/ + Q is equal to gpllQ *q gple.

For the compatible additions, let kg = X (P1+P5)X(P1—P5), 191 = X(P1+P5)Z(P1—
Pz) +X(P1 —P2)Z(P1 +P2), K11 = Z(Pl +P2)Z(P1 —Pz), so that (X(P1 +P2) : Z(Pl +
P5)), (X(Py — Py) : Z(P1 — P,)) are solutions of the homogeneous system P(X,Z) =
K11 X% — K01 XZ + x09Z% = 0. By symmetry, we can always write the x as biquadratic
polynomials in (X(Pq) : Z(Pq)), (X(Py) : Z(P,)). Define similarly x’ for P} = P; + Q,
P, = P,+Qto obtain a polynomial P’ (X, Z). The point (X (P —P;) : Z(P;—P;)) isaroot
of both P(X, Z) and P' (X, Z), and can be written as (kKoo — K01X(q * £11%00 — K11K00)-

We can use the G,,,-action from Lemma 4.7 to get rid of divisions: the cubical points
[A-Py + P,,Q;0,A- Py + Py + Qland [Py + P,,Q;0,P; + P, + Q] represent the same
biextension elements. This allows to replace divisions by multiplication.

Zy(P1+ P+ Q) =

We recall that a biextension point is then represented via gp o = [P,Q;0,P + Q]. We
could imagine a mix of the Z, = Z? representation and the affine lift representation: when
computing gl*;Q?‘ = [(D, Q; 0, (%PTQ], compute (X, (D), Z, ({D)) via a cubical biextension
ladder to represent {P, and use Z, ({P + Q) = Z,({P + Q) to represent (P + Q. Indeed,
to recover X, ((P + Q), given Z,(LP + Q) (and provided it is not zero), we just need to
compute x, ({P + Q). Since we are doing a ladder, we have (¢ — 1)P and {P, and we can
recover {P + Q via a compatible addition CompatibleAdd({P, Q; ({ — 1)P, P + Q).

So Z, (P + Q) is enough to compute the cubical arithmetic. Can we find fast formu-
las using Z, only without recovering X,? This is related to the question of denominator
elimination in Section 6.1.

4.8.5. Elliptic nets. Elliptic nets are another way to compute the cubical arithmetic of an
elliptic curve (or abelian variety), associated to the principal polarisation (0g). In elliptic
nets, the cubical point P=@@,oP))is only represented through o (P). This is not enough
to determine P let alone do cubical arithmetic.

The key insight of Stange is the following: while ¢ (P) alone is not enough, the data of
o (mP) for small values of m is enough to recover any o (nDb) through a recurrence formula.
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Likewise, the values of (T(nPTmQ) for small values of 1, m allow to compute all values
(P +6,0Q) through a more complicated recurrence formula.

The resulting recurrence formulas allows to build iteratively the so called elliptic nets.
Since elliptic nets compute the cubical arithmetic, they can be used to compute pairings:
compare [ , Theorems 17.2.1, 17.2.2] with Theorem 4.11 and | , Theorems 4, 5]
with Proposition 4.13. A somewhat annoying thing with the elliptic net representation is
that it cannot represent O, since ' (0g) = 0, so when using it to compute pairings through

the bixtension monodromy, it requires to compare gf,*é with ¢p ;5 rather than gla3 0 with the

constant 1.
Elliptic nets extend to abelian varieties using analytic thetas instead of the Weierstrass o
function, see [ , Chapitre 3] (which also gives formula for analytic thetas of higher level

than n = 2). Although the result is stated there for Jacobians of hyperelliptic curves, the proof
is valid for any abelian variety. The idea is that the differential addition formula deduced from
Riemann relations give a bilinear relation between products of the form 0;(z1 +2)6;(z1 —23)
and products of the form 0;(z1)0;(z3) and 0;(23)0;(z;). The associated matrix to these
bilinear relations is not of full rank and taking its determinant give the recurrence relation
sought for.

We now compare elliptic nets with our approach. First the strategy of the proof is slightly
different: Stange uses the analytic ¢ function to derive algebraic formulas for elliptic nets
over C, which she uses to give algebraic formulas for elliptic nets over any field. Here we
use the fact that we already know that the cubical arithmetic is algebraic to give an algebraic
interpretation of the analytic function ¢ as defining a cubical point, so that we can define an
algebraic o over any field. We could then recover the algebraic elliptic net recurrence from
this algebraic 0.

But the main difference is in terms of our choice of representation of cubical point: repre-
senting them only by o (P) loses a lot of information and the elliptic net representation needs
to work with many values. In Section 4.8, we give cubical formulas for the representation
(P, o (P)) where we keep track of the underlying point on the elliptic curve together with
o (P). In other words: the cubical points are the intrinsic object, and since o (P) alone can not
recover D, it makes working with the elliptic nets o (3" n;P;) directly harder than working
with the cubical points " 7,P; themselves.

And we will see in Section 5 that the sweet spot for efficient cubical arithmetic seems to
be to use the affine representation associated to the divisor 2(0g) and the global sections
X, Z, i.e. represent D via the level two affine coordinates X (D), Z(P) rather than by only one
affine coordinate o (D). Via this representation, as explained in Section 4.5 we will be able to
leverage the efficient Kummer arithmetic to an efficient cubical arithmetic.

The only drawback is that the polarisation associated to 2(0g) is not principal anymore,
so as explained in Remark 2.10 we will need to use the full power of Theorem 2.8 rather than
Corollary 2.5 to correctly handle the case £ even.

5. PAIRINGS ON KUMMER LINES

We specialize in Section 5.1 our whole framework of cubical arithmetic from Section 4
to the case of Kummer lines. Then we specialize further in Section 5.2 to the case of the
Montgomery model of Kummer lines, which allows us to prove Theorem 1.1.

5.1. Algorithms for a Kummer line. We will represent our cubical points through the affine
lift representation associated to the sections X, Z € I'(2(0g)) of the divisor D = 2(0f). We
will always take 0 = (1,0) as our choice of affine lift of O = (1:0).Indeed, we have seen in
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Input: (X(P) : Z(P)) a rational point of {-torsion, (X(Q) : Z(Q)) a rational point,
(X(P+Q):Z(P+Q))
Output: The non reduced Tate pairing et g, ¢(P, Q)

> Take arbitrary affine lifts P = (X(P),Z(P)), § = (X(Q),Z(Q), P+Q =
(X(P+Q),Z(P+ Q).

- Compute (P, (P + Q using either Algorithms 4.2 and 4.3.

> Write IP = A p0, P + Q = A, pQ.

-> Return/\p = Al,P/AO,P'

ALGORITHM 5.1. The non reduced Tate pairing associated to 2(0Og) on a
Kummer line

Remark 4.18 that normalizing 0 in level 2 through (Zz/(x/y)z) (0) = 1, makes Xz(()) =1,
so0 = (1,0) in level 2 corresponds to ZZ(O) = 1 being normalised with respect to (x/ y)z.

The algorithm to compute the non reduced Tate pairing is given in Algorithm 5.1. To
compute the Weil pairing, it suffices to apply Algorithm 5.1 again with the arguments P, Q
reversed, but making the same choices for D, @, PTQ (or if making different choices for
whatever reason, ensuring the associated biextension element g¢ p is equal to t(¢p ), to
obtain A . The Weil pairing is ey 5, (P, Q) = Ap/Aq.

This is the (non reduced) Tate and Weil pairings associated to 2(0f), so the square of the
usual non reduced Tate and Weil pairing. When £ is odd, and if the characteristic p > 0,
to recover the usual reduced Tate pairing it suffices to adjust the final exponentiation from
(g —1)/Lto (g — 1)/(28). In any case, having the squares of the usual pairings on p; is
not a problem in practice if £ is odd (one could always take a square root if needed). This
becomes a problem if £ is even, in which case we use the strategy of Remark 2.10 to compute
the standard (non reduced) Tate and Weil pairing associated to (Og). In this case, { = 2m,
and rather than computing P, (P + Q, we compute mP, mP + Q.

By assumption, T = mP is a point of two torsion, and we can now use the action of an
element of the theta group g7 € G(2(0g)) above T as explained in Section 4.5.

Concretely, the translation by T is given by a projective matrix, i.e. an action of the form
(X,Z) » (aX+bZ : cX +dZ). Take any choice of affine lift (X, Z) — (aX +bZ,cX+dZ)
of the translation by T on (X, Z) coordinates. In other words, we lift the projective 2 x 2
matrix of translation to a standard matrix; this is the same as making a choice of theta group
element gr € G(2(0g)) above T and looking at the action of g7 on (X, Z). The choice
of an affine point T is a way to encode this choice: g7 should then be the unique element
such that g - 0 = T. We we call the action of a g corresponding to T on a cubical point
P the translation of P by T and denote it P + T = Translate(?, T'). Then we can compute
[P=mP+T,0P+Q=mP+Q+T.

Since T = mP, we could use in practice the choice of T = mP which just computed; but
we remark that a different choice of T would still get the correct value as long as we use the
same choice of T for both the translation action to compute {P and ¢P + Q, since changing T
to AT would change P to ALP and ¢P + Q to AP + Q, so they would still induce the same
biextension element by Lemma 4.7.

We will also denote by Translate(P, T) an algorithm which makes a choice of T depending
on T and then call Translate(P, T); as long as the choice of T is the same for every call with
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Input: (X(P) : Z(P)) a rational point of {-torsion, (X(Q) : Z(Q)) a rational point,
(X(P+Q):Z(P+Q))
Output: The non reduced Tate pairing et g,y ¢ (P, Q)

> Take affine lifts P = (X(P),Z(P) = 1),0 = (X(),Z2Q) = 1,P+Q =
(X(P+Q),Z(P+Q) =1).

> Compute mP, mP + Q using either Algorithms 4.2 and 4.3.

> Let T = mP, and compute P = Translate(mP,T) and EPTQ =
Translate(mP + Q), T).

> Write {P = A p0, (P + Q = A, pQ.

> Return Ap = A4 p/Ag p.

ALGORITHM 5.2. The non reduced Tate pairing associated to (0g) on a
Kummer line for { = 2m even

the same T, the computation will be correct. This can save us some arithmetic operations,
for instance on a Montgomery model if mP = (0,a), we prefer to take 0:1) = (0,1)
rather than (0,4). Indeed in the former case, the translation action by (0,1) is simply
(X,Z) » (Z,X), while the translation action of (0,a) would be (X, Z) — (aZ,aX), so we
save multiplications.

The algorithm for the non reduced Tate pairing for even { is given in Algorithm 5.2, and
like for Algorithm 5.1 it gives an algorithm for the Weil pairing by calling it a second time
with (P, Q) swapped and computing ey (o, ¢(P, Q) = Ap/Ag.

By Remark 4.17, it is important in Algorithm 5.1 that we normalize our cubical points via
Z = 1.Indeed, the divisor of zeroes of Z is 2(0g), so it satisfies the condition of Algorithm 5.1,
and normalising all points with Z = 1 is a convenient way to be sure that the associated
biextension element gp ¢ is a rational tensor square. (We do have Z (0) = 0, but 0 is
normalised for Z with respect to (x/ y)2 which is a square too.)

We could allow an arbitrary normalisation of P, Q, P+ Q, but we would then need to

— [4
. ZP+Q)
adjust Ap by <Z(T3)Z((§) ) .

We can also use Proposition 4.13 to compute the (non reduced) Ate pairing (with re-
spect to 2(0g), so the square of the usual Ate pairing). We reuse the notations of Sec-
tion 3.4 and Proposition 4.13, and let m = £ mod g. We recall that nq((X(ﬁ),Z(ﬁ))) =
(114 (X(P)), 715 (Z(P))).

A summary is given by:

Theorem 5.1. Let E/F, be an elliptic curve, and X = X5 ¢, the biextension associated to
the divisor 2(0g).

When  is odd, to compute the square of the non reduced Tate pairing (resp. of the Weil
pairing), we need to compute one (resp. two) biextension exponentiation by L.

When Uis even, to compute the usual non reduced Tate pairing (resp. of the Weil pairing),
we need to compute one (resp. two) biextension exponentiation by {/2, followed by an affine
translation by a point of two torsion.

To compute the square of the usual m-Ate pairing (withm = q mod (), we need to compute
one biextension exponentiation by m.
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Input: (X(P):Z(P)) € Gy, (X(Q):Z(Q)) € G, (X(P+ Q) : Z(P+Q))
Output: The non reduced Ate pairing 4, g, (P, Q)

> Take arbitrary affine lifts P = X(P),z@P), 0 = X(Q),Z2Q), P+Q =
(X(P+Q),Z(P+Q)).

> Compute mP, mP + Q using either Algorithms 4.2 and 4.3.

> Write mP = Ag p71,(P), mP + Q = A1 p7,(Q).

> Return /\p = Al,P/AO,P'

ALGORITHM 5.3. The non reduced Ate pairing associated to 2(0g) on a
Kummer line

Furthermore, using the cubical representation of biextension elements, and representing
cubical points P by the affine lifts P = (X(P), Z(D)), where X, Z are sections of 2(0g), a
biextension exponetiation then costs:

o Using the cubical biextension ladder from Algorithm 4.2, one affine doubling and two
affine differential additions by bits. (One could replace an affine differential addition
by a three way addition instead.)

As special cases:

- When £ = 2" or for self pairing e(P, P), one affine doubling and one affine
differential addition by bits

- For batch Tate or Ate pairings computations e(P, Q;) with the same base point P,
after the first biextension exponentiation the follow up biextension exponentiation
only cost one differential addition (alternatively, one three way addition) by bits

o Using the cubical biextension double and add from Algorithm 4.1, one affine doubling
and one differential addition (or alternatively one three way addition) for each doubling,
and one compatible addition and one three way addition for each addition.

5.2. The Montgomery model. As explained in Section 5.1, to compute pairings using the
formulas from Theorem 4.11 and Proposition 4.13, we need to compute cubical biextension
exponentiations using either Algorithm 4.2 or Algorithm 4.3.

For the first one, we just need to explain how to compute affine doublings and affine
differential additions in X, Z coordinates. For the second one, we also need to give algorithms
for compatible additions and three way additions in X, Z coordinates.

Explicit formulas in the level 2 theta model (in any dimension) are given in [ ]. In this
section, we thus concentrate on the Montgomery model of Kummer lines. We use Section 4.8
to derive our cubical arithmetic. We start with a Montgomery curve By? = x3 + Ax? + 1.
x-only additions have a particularly nice form on the Montgomery model:

(x(P)% —1)? (X(P)2 — Z(P)?)?

D B GETF AP T 1) AX(PIZP) (XD + AX(PIZ(P) + Z(P)D)

and

x(P)x(Q) — 1 )2
x(P) = x(Q)
On the other hand, by Section 4.8.4, we have

Z(2P) = 4X(P)Z(P)(X(P)?2 + AX(P)Z(D) + Z(D)?),

(X(P)X(Q) — Z(P)Z(Q) )2

HE+ QP -0Q) :< X(P)Z(Q) — Z(P)X(Q)
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Input: P = (X(P),Z(P))
Output: 2P = (X(2P),Z(2P)) = Double(P)

a= (X(P)+ Z(P))?
b= (X(P) — Z(P))?
c=a-">

X(2P) = ab

Z(2P) = c(b+ 2F20¢)

[ 2 2 2

ALGORITHM 5.4. Affine cubical doubling in the Montgomery model

Input: P = (X(P), Z(P)),Q = (X(Q), Z(Q), P=Q = (X(P - Q),Z(P - Q)
Output: P+ Q = (X(P+ Q),Z(P + Q)) = DiffAdd(P,Q,P = Q

u = (X(P)+Z(P))(X(Q) —Z(Q))
v = (X(P) - Z(P)(X(Q) + Z(Q))
4X(P+Q)X(P - Q) = (u+10)?
4Z(P+ Q)Z(P — Q) = (u —v)?

N 2 2

ALGORITHM 5.5. Affine cubical differential addition in the Montgomery model

and
ZPFQZEP=Q = (X@zP) - X2’

In particular, combining both equations, we see that the natural way to write x(2P), x(P +
Q)x(P—Q) asrational functions in terms of the projective coordinates X (P), Z(P), X(Q), Z(Q)
already gives us the correct cubical arithmetic by taking the numerator for X (2D), X (PTQ)X (PTQ)
and the denominator for Z(2D), Z(PTQ)Z(PTQ) respectively! We remark that we can
also directly recover the formulas for X (2P) and X (PTQ)X (P’:/Q) from the ones for Z,
by using that if T = (1,0), X(P) = Z(P + T). We obtain Algorithms 5.4 and 5.5 for the
cubical arithmetic.

Some comments are in order: in these algorithms we take 0= (1,0). Taking a different

affine lift of 0, we would need to adjust the doubling and differential addition formulas

accordingly. Also the Montgomery coefficients A or % are often represented in projective

coordinates ‘A’T+2 = (Ayy : Cyy). Here I gave the cubical formulas where C,4 is normalised
to 1. (Alternatively, using the notations from Algorithm 5.4, a C54 not normalised to 1
corresponds to doubling formulas given by X (2P) = Cp4ab, Z(2P) = c(Coub + Ayyc), and
associated to a different normalisation of 0, but then we would need to update the cubical
differential additions for this different normalisation.) However, as explained in Remark 4.14,
for pairings we only need the biextension arithmetic, which is more flexible than the cubical
arithmetic. In particular, the extra factor 4 in the affine differential addition formulas do not
matter for pairings (it does for other applications though): in the case of the Weil pairing
they are compensated in the quotient Ap/A(, and in the case of the Tate pairing it is killed
by the final exponentiation, as long as we are not over the base field F,,.
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Input: P=(X(P),Z(P))and T = (X(T) : Z(T)) a point of 2-torsion
Output: P+ T = (X(P+T),Z(P + T)) = Translate(P, T)

> IfT =0 = (1:0), return (X(P), Z(P))

> If T = (0:1), return (Z(P), X(P))

> Else T = (X(T) : Z(T)), we fix once and for all T = (X(T),Z(T)) and return
(X(TYX(P) = Z(T)Z(P), Z(T) X (P) — X(T)Z(P))

ALGORITHM 5.6. Affine cubical translation by a point of 2-torsion in the
Montgomery model

To compute pairings for £ even, we also need to make a choice of affine lift of translation by
points of 2-torsion (i.e, fix once and for all an element (T, g1) € G(2(0g)) represented via
its action on the (X, Z) coordinates). This is done in Algorithm 5.6. We remark also that for
Montgomery Kummer lines, we could apply Algorithm 5.2 by normalising our points with
respect to X rather than to Z, because the divisor of zeroes of X is 2(T), with T = (0 : 1),
so by Remark 4.17, X is also a suitable coordinate for normalisation.

Remark 5.2 (Complete arithmetic laws). We remark that Algorithm 5.4 is always well
defined, even for doubling 0, and Algorithm 5.5 is also always well defined, except in the
case where P’:JQ isaboveapointP— Q=0 =(0:1)orP— Q=T = (1:0).Inthe
first case, we have P = Q, and so we can first compute 20 = Double(Q) and then adjust the
result depending on the scalar thus that P=A p Q, P’—VQ = AOC): DiﬁfAdd(F, Q, P’—VQ) =
2 ~ ~

% Double(Q). In the second case, we first lift the translation action by T by taking T =
(1,0) = g7 - 0, with g7 € G(2(0g)) satisfies g7 - (X,Z) = (Z,X). Now DiffAdd(gr -
Qv, @, ™ = gr: Double(@). We can thus compute Double(@), apply g7 on it (i.e. switch the
X and Z coordinates). Then we need to adjust by the scalars such that P = Ap-g7-Q, P — Q =

~ ~ ~ — 2 ~
AoT. Then DiffAdd(P, O, P~ Q) = %gT - Double(D).

This means that, adapting our formulas for these particular case, we have complete cubical
arithmetic laws on Montgomery Kummer lines. In practice, for a pairing computation

e(P,Q), we can always use Algorithms 5.4 and 5.5, except when P, Q or P + Q is equal to
the two torsion point T = (0 : 1). We might as well treat these cases globally.

We obtain the following complexity, which complements Theorem 5.1, for pairings in the
Montgomery model of Kummer lines:

Theorem 5.3. Given the Kummer line Montgomery coordinates (X(P) : Z(P)) of P, Q, P+Q,
first do a batch inversion to compute x(P) = X(P)/Z(P), x(Q), x(P + Q) and their inverses,

and also compute %. Take for cubical points 0=(1,0),DP = (x(P),1), Q = (x(Q), 1),
P+¥Q=xP+Q),1).

Then during the cubical biextension ladder, each affine doubling costs 2M + 25 + 1mg and
each affine differential addition costs 3M + 2S.

Theorem 1.1 follows from Theorems 5.1 and 5.3.
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For the double and add algorithm, we need to give the formulas for the compatible
addition. Using the notations of Section 4.8.4, we have

Koo = (X(PY)X(Py) = Z(P1)Z(Py))?,

K11 = (X(P1)Z(P1) — Z(P1)X(Py)),
by the differential addition formulas from above. Lastly,
Ko1 = 2((X(P1)X(P2) +Z(P1)Z(P2)) (X(P1)Z(P2)+X (P2)Z(P1)) +2AX (P1) X (Py) Z(P1) Z(P5))
by homogenisation of [ , Example 4.4].

We can obtain X (P; + P, + Q) from the formula for Z simply by replacing Q by Q + T:
(X(P)X (Py +Q) = Z(P1 + QZ(Py)) (X(P)X (P + Q) = Z(Py + Q) Z(Py))
(X(Py =P2)X(Q) = Z(P{ = P)Z(Q))

This gives us the 32M + 4S5 + 2m count for an addition. There is probably room for
improvement for these formulas by rearranging the arithmetic operations. Also it could
potentially be faster to do a compatible addition to compute P; + P, + Q projectively

rather than P; — P,, and then using cubical arithmetic to get Py + P, from a choice of
P1+P, +Q.

X(Py+P,+Q) =

6. APPLICATIONS

We discuss various applications of the cubical arithmetic. In Section 6.1 we look at pairing
based cryptography and how the cubical arithmetic on Montgomery models from Section 5
compares with the usual Miller’s algorithm. We also derive new (to my knowledge), more
or less interesting, formulas for the standard Miller algorithm by using the cubical point of
view.

In Section 6.2, we briefly mention some applications of cubical arithmetic beyond pairings,
notably on isogenies and radical isogenies.

In Section 6.3, we reinterpret, using cubical arithmetic, Doliskani’s supersingularity test
(see [ ; 1) as a self Tate pairing test.

Finally, our most important application is probably Section 6.4 where we use cubical
arithmetic to obtain a new powerful side channel attack against the Montgomery ladder
for Montgomery curves. Namely, one projective coordinate leak in the Montgomery ladder
allows to solve the elliptic curve dlp by reduction to the base field dlp.

Each of these applications would deserve an article on its own'. We won't detail these
applications much in this paper, because it is quite long already.

6.1. Pairing based cryptography.

6.1.1. Comparison with Miller’s algorithm for pairing based cryptography. For pairing based
cryptography on elliptic curves, with embedding degree d > 1, it is convenient to use the Tate
pairing with P € G C E(IF'q), Qe G, C E(]qu), and d even to allow for denominator
elimination. We recall that Q € G, if and only if 7, (Q) = qQ.

Counting only operations involving the big field F g Miller’s algorithm, with denominator
elimination, costs 1M + 1S + 1m by doubling, and 1M + 1m by addition. Here 11 denotes a

Which I cannot promise I will ever write someday; I already made such promises in previous papers and so
far I have a bad track record on keeping these...The only exception will hopefully be the monodromy leak attack,
because several people have encouraged me to publish it in its own paper, rather than to hide it at the end of a
paper about biextensions.
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“mixed multiplication’, meaning a multiplication between a coefficient in F; and a coefficient
in IF q,j.

When denominator elimination is not possible (because d is odd or Q is not in G,), the
cost becomes 2M + 2S + 1m by doubling, and 2M + 1m by addition. (In practice, working
with projective coordinates for P, the number of mixed multiplications m is a bit higher, see
Section 6.1.2.) On the other hand, when d is odd, there are variants of Miller’s algorithm
in the literature (notably [ 1) which we will discuss in Section 6.1.2, which achieve
25 + 1M + 3m for a doubling and 1M + 2.5m for an addition.

Using our arithmetic of biextension on Kummer lines in the Montgomery model, only
counting the operations on the big field, we have 25 + 1M + 2m by bit for the cubical
biextension ladder. This is better than Miller’s algorithm (even the improved variant), except
when denominator elimination is available.

Our main difficulty is that it is not clear how to do an efficient denominator elimination in
cubical arithmetic when the embedding degree is even. If d is even and Q € G,, then x(Q)
lies in a strict subfield of F 4. This allows to do denominator elimination, i.e. not compute the
denominator of the Miller functions y,,p ,,p evaluated at Q, since this evaluated denominator
is x(Q) — x((u + v)P) is in a strict subfield, hence killed by the final exponentiation.

In Theorem 1.1, for P € G1, Q € G, and d even, then while x(P), x(Q) lies in a subfield,
we also need to use x(P + Q) which does not. This means that for the cubical biextension
ladder, the cost is 25 + 1M + 2m when the current bit is 1 and the difference pointis P + Q,
and 25 + 2m when the current bit is 0 and the difference point is P.

It could be interesting to work out formulas where we represent mP + Q using only
Z(mP + Q) rather than via (X(mP ¥ Q),Z(mp—: o).

On the other hand, for the Ate or optimal Ate pairing, since the computation is done with
P € G, and Q € Gy, it is plausible that the cubical arithmetic could be faster than the
usual Miller’s algorithm, since the overall number of operations for a generic pairing is much
smaller.

6.1.2. Cubical arithmetic and new formulas for Miller’s algorithm. In this section, rather than
comparing Miller’s algorithm with the cubical arithmetic on Kummer lines, we will compare
Miller’s algorithm with the cubical arithmetic on elliptic curves, where we represent P by
using the level 3 projective Weierstrass coordinates P = (X(P) : Y/(P) : Z(P)) along with
the level 1 affine cubical coordinate Z; (P).

To simplify, we will consider the case of the Tate pairing P € G1,Q € G,. In Miller’s
algorithm, we compute f; p((Q) — (0)). In the cubical arithmetic, we compute (P, QPTQ.
The relationship between the two approaches is given by Porism 4.16. In particular, assuming
we fix D, O, PTQ so that Z; (P) = Z4 ) = Z4 (P+ Q) = 1, under our assumptions on
P, Q, we have that Z; (EPTQ) is equal to f; p((Q) — (0)) up to a factor lying in the small
field F ;, which will be killed by the final exponentiation.

Now we already saw in Remark 3.15 that the biextension arithmetic provided new insight
on how to compute f; p via the functions y,,p ,p.

Let’s start by formulas to compute Z; ((P + Q), using Section 4.8.3. We have the doubling
formula

Z1(2mP) = 2y(mP)?Z$(mP)
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and the differential addition formulas
Z1(2m + 1)P)Zy(P) = Z1((m + 1)P)2Z; (mP)*(x(mP) — x((m + 1)P)),
Z1(2mP + Q)Z1(Q) = Z;(mP + Q)?Z; (mP)? (x(mP) — x(mP + Q)),
Z1(2m+DP + Q)Zy(P+ Q) = Zy ((m + P + Q)2Z; (mP)*(x(mP) — x((m + 1)P + Q)).

This allows to compute QPTQ viaa cubical ladder using the points mP, (m + 1 )P, (m + ’i\)fj + Q.
(Note the similarity with Remark 3.15).

We could also use a double and add algorithm, using
Z1(2mP+ Q)Z1(Q) = Zy(mP + Q)?Z; (mP)? (x(mP) — x(mP + Q))
for doublings, and the three way addition

_ Z1(P+mP)Zy(mP + Q)Z, (P + Q) Lup,p(Q)
Z,(P +mD = ~ : ’
1(P+mP + Q) 7BV 2 GiPY 2,0 (x(Q) — x(mP)) (x(Q) — x(P))

for an addition. We could also compute the doubling using the following three way addition:
Zy(mP +mP)Z;(mP + Q)% Lyp,mp(Q)
Z,(mP2Z,(Q  (x(Q) —x(mP))?)’

I implemented both methods and the pairing is computed correctly, but these formulas
seem a priori no faster than Miller’s standard algorithm.

However, the following approach seems the most promising: use a double and add algo-
rithm, using

Z1(2mP+ Q)Z1(Q) = Zy(mP + Q)?Z; (mP)? (x(mP) — x(mP + Q))
as before for doublings, and
Z1(2m + TP + Q)Zy (P + Q) = Z1((m + 1P + Q)2Z; (mP)? (x(mP)—x((m+1)P+Q))

for a doubling and addition.

Now we remark that the function Q — x(mP) — x(mP + Q) has for divisor (0g) +
(—=2mP)—2(—mP) sois equal to a biextension function g, p ,,p (Q). In particular, (x(mP)—
x((m+1)P + Q)) is given by g,,,p ,p(P + Q).

This gives the following alternative strategy to compute the (normalised) Miller function
fop(Q). Usuallywe usef,, ., p(Q) = f,, p(Q)fo, p(Q)pyyp,»p(Q) With 12, p ., p the normalised
function with divisor D,,p, ,p — D,,p + D,,p. In particular, the above formula gives the same
Miller doubling: 5, p(Q) = f,, p(Q)*#,p ,,p(Q). But we also have the following Miller
DoubleAndAdd: f5,,41 p(Q) = Cfu+1’P(Q)2ﬂuplup(P + Q). Here the constant C refers to
the fact that the function Q — p,,p ,p(P + Q) is no longer normalised; however under our
assumptions that P € Gy, C is in a strict subfield so will be killed by the final exponentiation.
Of course, this formula can be proved directly without going through the cubical arithmetic:
the left hand side has divisor D 5,,,1,p — (21 + 1) Dp while the right hand side has divisor
2D ys1yp — 204 + 1DDp + £5(Dayp — 2Dyyp) = 2D y11yp — 2t + 1)Dp + D gyys1yp —
2D<u+1)p + Dp = D(2u+1)P — (214 + 1)Dp

Using the standard sign conventions, the latter formulas reads:

£2,11,p(Q) = Cf,i1 p(Q)?pyp,up(Q — P).

This gives the following double and DoubleAndAdd algorithm: at each step we compute mP
or (m + 1)P along with f,, .1 p(Q) up to some factor in a subfield.
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We use either: f,,, .1 p(Q) = C1f,, 1 p(Q)? Hmp,mp(Q — P) (in which case we need to
compute mP if we had (1m+1) P, and we also compute 2mP) or f5,,,,» p(Q) = szm+1’P(Q) HPm+1)P,(m+1)P(Q)
(in which case we need to compute (1 + 1) P if we had mP, and we also compute 2 (1 + 1) P).
This makes a DoubleAndAdd very similar to a simple doubling.
We compute in this way f; p(Q) (or fi, 1 p(Q) if we prefer). As far as I know, this Dou-
bleAndAdd method is new. We refer to [ ] for the implementation.

Let us compare this strategy with known optimisation of Miller’s algorithm. In [ I,
1

f—u,P(Q)f—v,P(Q)l—uP,—vP(Q)
which involves yuP,vP(Q) = luP,vP(Q) /Vup4op(Q), where v, p,p = luP+vP,—uP—UP’ this
saves the denominator v,,p ,p(Q) of yi,,p ,p.

In [ ] the authors introduce functions with divisors £(P) + (—{P) — (£ + 1)(0)
which give a streamlined double and add formula. We remark that such a function is given
by f_y p, so [ ] is subsumed by the formula above from [ 1.

Under the assumption P € G1,Q € G, and counting only operations in the big field,
[ ] have a complexity (for d odd) of 2S + 1M + 3m for a doubling (compared to
2S + 2M + 5m for the classical Miller formula), and 1M + 2.5m for an addition (compared
to 2M + 5m for the classical Miller formula); so a DoubleAndAdd costs 2M + 2S + 5.5m
(compared to 4M + 25 + 10m). When d is even, they have the same complexity (in the big
field) as the usual Miller’s formula of 1M + 1S + 1m for a doubling and 1M + 1m for an
addition; so a DoubleAndAdd costs 2M + 1S5 + 2m. (We assume here that multiplying an
element in F, with an element of I a2 is half the cost of a multiplication of an element in
IFP with an element in IFp,;.)

Our new DoubleAndAdd method cost 25 + 2M + 5m both for a doubling and a Dou-
bleAndAdd. When d is even, we have the same difficulty as in Section 6.1.1 that x(P + Q)
does not lies in a subfield. If IF'pd = ]de/z[i] with 2 = ¢, we can use that 1/(x + iy) =

they use the formulaf, , , p(Q) = Compared to the usual formula

(x—1y)/ (x2 — dyz) where x,y € de/z and since x2 — d]/2 is in a strict subfield, this allows
to replace divisions by multiplications. The cost becomes 2M + 15 + 3m for a DoubleAndAdd
which involves x(P + Q) and 1M + 1S + 1m for a doubling which involves x(Q) which
is in a subfield. So for d odd, the DoubleAndAdd method is better than the usual Miller’s
formula but not better than [ ], and for d even roughly similar to [ ].

However we can combine the DoubleAndAdd variant with the following line folding trick

I
(see [ , Lemma 3.2] and the references): Utz(é')T;zQTi 5= Th1s allows to delay a

vertical line evaluation and fold it in a standard line evaluation. Wlth the DoubleAndAdd
algorithm, since we change the evaluated point according to whether the current bit is O or
1, we can only apply this line folding trick for consecutive Os or 1s. Using this line folding
trick, [ ] obtain a complexity, for d odd and forgetting mixed additions, of 25 + 1M for
a doubling and 25 + 2M for a double and add. (They give 2S5 + 1M or 25 + 2M according
to which branch of the algorithm is evaluated, but it seems to me that in the branch where
a parabola is computed one should account that evaluating this parabola costs 2M). By
comparison, our DoubleAndAdd algorithm (and also not counting mixed additions), we
have a cost of 25 + 1M for consecutive doublings or DoubleAndAdds, and, as we have seen
above, a cost of 25 + 2M when we switch from a bit equal to 0 to a bit equal to 1 or conversely.
In the case when d is even, using the line folding trick, consecutive DoubleAndAdds cost
1M +1S, the same as doublings (whether they are consecutive or not). So this DoubleAndAdd
algorithm could be interesting when £ has low Hamming weight.
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6.2. Algorithms for abelian varieties. The cubical arithmetic we develop has important
applications beside pairings. Notably it gives a convenient way to work out the arithmetic
of theta group of level {n while using coordinates of level n evaluated on cubical points of
{-torsion, so the cubical arithmetic can be used to find isogeny formulas in any models (by
contrast to | ; ; ] which use the theta model).

The basic idea is as follows: let (A, L) be a polarised abelian variety. To compute (-
isogenies, we need to work out the arithmetic of the theta group G(.L"). We recall from
Section 2 that an element (P,gﬂlp) € G(LY is such that P € Ker D . where ® (((P) =
t5L" ® L is the polarisation associated to L* and gt p is a section of Lt @ L4

In particular, a cubical point P for L is enough to determine g rt p- Now a cubical point
P for L does determine a cubical point for L, simply by taking the tensor product to the €
of the rigidification at P. (In particular, P induce the same cubical point for .L' whenever
'=1)

This allows to work on the theta group G(.L") (i.e. at level £) while using cubical points
for L (i.e. at the base level). For instance, if P € A[{], we can solve the equation (P = 0;
we have (2 solutions (over k), which correspond to the { elements gp of order { above P
in G(LY. We can go further, and if £ = 20’ 4+ 1 is odd we can also solve the equation
(' + 1)P = —'P; this gives { cubical points, which corresponds to the unique symmetric
element gp € G(L') of order £ above P. If .Lis totally symmetric and ¢ = 20’ + 2 is odd, we
have the equation (¢ + 2)P = —€'P which gives 2€ solutions, which corresponds to the two
symmetric elements ¢p € G(L") above P. We call these the canonical symmetric elements
of order {.

(Warning: if P is scaled such that £P = 0, then we might not have (£ + 1)P = 0. For an
arbitrary cubical point P, writing (P = Aq0 and (£+1)P = AgA; P, we have ero(P,P) = A4
from the monodromy definition of the (non reduced) Tate pairing, and also from the cubical
arithmetic we can check that A3 = A!. There is a unique & such that a’ = Aq and if £ is odd,
a? = Ay, and we have (£’ + DP =a-—0'P. Wesee that (0’ + 1)P = a- —¢'Pifand only if
(P=0and (¢+1)P =P)

Using the generic isogeny framework from [ ,§ 2.9, § 4.2], explicit formulas for
the cubical arithmetic gives explicit formulas for isogenies (or even to compute a basis of
algebraic theta functions or change levels). We have just seen in this paper how the cubical
arithmetic allows to compute pairing. Now by the construction of the algebraic Riemann
relations from Proposition 4.1, the cubical arithmetic can be derived from explicit formulas
for the theorem of the square: 5, o L ® L =~ t;.L ® t(, L, which also (implicitly) encodes
addition formulas. In summary: the theorem of the square, and the derived cubical arithmetic,
is key for all standard algorithms on abelian varieties: additions, pairings, isogenies.

We remark that the cubical arithmetic also extends to isogenies. Letf : A — B be an
isogeny of abelian varieties, M a line bundle on B and .L a line bundle on A such that fis a
{-isogeny, i.e, f* M ~ L. We fix such an isomorphism once and for all. We remark that a
rigidification P of f*M (hence via the isomorphism above, a rigidification of .L') at a point
P € A corresponds to a rigidification of M at the point f (P), which we denote by f (P) (or
rather f (P) where f depends on the choice of isomorphism f* M =~ LY. It is convenient to
normalise the neutral points so that f (0,4) = 0.

Cubical points thus also give the correct conceptual framework to build algorithms for
radical isogenies. It is known (see [ ; ] for dimension 1 and [ ; ]
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for the general case) that radical isogenies can be described by choices of £-th root of unity
on Tate pairings.

Let us focus to the case of radical elliptic curve isogenies for simplicity. We start with
P € E a point of £-torsion, and the goal is to find formulas not only for the isogeny ¢ :
E — E' = E/{P) but also to find a new point P’ € E’ of {-torsion such that the associated
isogeny is not backtracking. It is not hard to see that such choices of P’ are in bijection with
@~ 1(P), and the theory of radical isogenies state that this fiber is in bijection with choices of
{-th root of the non reduced Tate self pairing ey ((P, P). We refer to [ ] for a geometric
description of this isomorphism. Since cubical point arithmetic can be used to compute the
Tate pairing, it is not surprising that they can explain radical isogenies, or more generally
fibers of isogenies.

In brief, let f : E; — E, be a cyclic isogeny of degree {, and f the contragredient isogeny.
Fixing a point P € Ker f gives through the Weil-Cartier pairing eran isomorphism Ker f =
up, and if Q € E,(Q), the (non reduced) Tate pairing eT,f(P, Q) = er (P, Q), seen as a
Hg-étale torsor { t= er ¢(P,Q), is isomorphic to the fiber f ~1(Q) which is a Ker f-torsor. (In
other words, the Galoisian structure of f ~1(Q) can be derived from the Galoisian structure
of I = er ¢(P,Q).) For an {-isogeny f : A} — A, of principally polarised abelian varieties
of dimension g, fixing a basis Py, ..., Pg of Ker Fsplits Ker f as a product yf , hence splits the
torsor f ~1 (Q) as a product of yy-torsors, whose isomorphism classes are given by the torsors
7t =er (P, Q).

Let us go back to an {-isogeny f : E; — E, of elliptic curves for simplicity, and assume
(-odd. The symmetric divisor E(OEl) on E; descends (up to linear equivalence) to the
symmetric divisor O, on E;, so by Mumford's theory corresponds to a lift K of Kerfto the
theta group G(£(0f,) (in practice: this is the unique lift given by symmetric elements of
order €). Now let P € Kerfand P’ € E;[{] be a preimage of P by f. By the discussion above,
a choice of cubical point P (of level 1) for P gives a choice of cubical point P’ (of level £) for
P’, but since P’ is in Eq [£], the local rigidification of the line bundle associated to £(0g) at
P’ gives a global rigidification, hence an element gp € G(£(0f D) and conversely. So in the
other direction, since we have the canonical level subgroup Kc G(£(Og,)) above K = Ker f
we have a canonical cubical point of level £, for P’, hence a canonical cubical point P of level 1
for P. One can check that this P is symmetric and of order { for the cubical arithmetic (in the
terminology above it is a canonical cubical point above P), and that replacing P’ by P’ + T
with T € Ker f replace P by {P for { = ef(T, P). In particular, the { canonical cubical points
P above P all come from a choice of P’ € L.

On the other hand, to compute a canonical cubical point P above P, one can start with
an arbitrary cubical point P, write { = 20’ + 1, and compute the monodromy Ap between
(¢’ + 1)P and —¢'P. By Remark 3.13, this monodromy Ap is exactly the square root of the
non reduced Tate pairing er (P, P). Canonical cubical points are then of the form P, where
Z~% = Ap. Since we have seen that we also had a bijection with the preimages of P, this gives
an explicit bijection between C‘“ =Ap =eq, (P, p)l/2 andf_1 (P).

To study the general fiber f =1 (Q) for some point Q € E, (k), we can proceed similarly.
Fix a Q' in the preimage, and an arbitrary cubical point of level 1 for Q (hence of level £ for
Q). We have seen that each preimage of P’ of P gives a level { theta group element ¢/, hence
an action gps - O, hence by descent a cubical point P+Q= gp - Q above P + Q. One can
check that P+ Q satisfy the equation P + Q = @, and that changing P’ by P’ + T changes
P+Qto er(T, P )P+ Q. Hence we get all £-cubical points P + Q satisfying this equation.
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On the other hand, we can also compute these cubical points on E, directly: take an
arbitrary P + Q, an arbitrary canonical cubical point P so that {P = 0, and compute the
monodromy P + Q = ApQ. By the monodromy interpretation of the Tate pairing, we have
Ap = e7 (P, Q). The points P+ Q we search for are the ones given by P + Q where ¢ =
Ap. Hence in this case, we have an explicit bijection between couples (J, Q + P) satisfying
Q + &P = Q; roots of the equation { ¢ = Ap = er ¢(P,Q); and couples (Q', Q" + P" +T)
where f(Q") = Q,f(P") = P are fixed and T goes through Ker f.

The same strategy works for higher dimension. In practice, this allows to obtain explicit
formulas? for fibers of isogenies between abelian varieties in the theta model, and also to
obtain explicit multiradical isogeny formulas in the theta model. The formulas can be derived
from the study of fibers of modular correspondances of [ ; , § 5.2.2], then
using [ ; ] to reinterpret the constants appearing in these formulas as suitable Tate
pairings, and then (a not yet published) adaptation of the descent level formula from [ ]
to go down in level without multiplying by .

6.3. Supersingularity testing as a self pairing test. Let E/FF, be an elliptic curve (with

j-invariant different from 0,1728), ¢ = p2. We would like to test if it is supersingular. In
[ ], Doliskani proposes the following probabilistic supersingularity test.

Recall that on an elliptic curve with a Weierstrass equation, there are canonical polynomi-
¢n (xP) Wy (xP/yP) ) The

Yixp)” 7 (xp,yp)
polynomial ¢, is the n-th division polynomial: ¥, (xp, yp) = 0 if and only if P is a non

trivial point of n-torsion. (If # is odd, 1,, depends only on x).

Furthermore, there is a linear recurrence relation for these polynomials, which allows to
compute §,, (xp, yp) efficiently.

If the characteristic is p, then Pp(x) = 1,3][, (x)?, where 1%, (x) is a polynomial of degree
(p —1)/2if E is ordinary, or +1 if E is supersingular. In particular, E is supersingular if and
only if l/J}% =1] , Lemma 4; , Lemma 3].

als ¢,,, w,,, ,, (depending on E) such that if P = (xp,yp), nP = (

Doliskani’s supersingularity test is then to sample arandom x € F, and testif 9, (x)% =1.
If it is not the case, we know that E is ordinary. Otherwise, by the Schwartz-Zippel lemma
[ , Lemma 2], we know that E is supersingular with high probability [ ,$3].In
[ , § 4] this test is further refined.

We now reinterpret this test as a pairing test. First, the division polynomials ,, give
precisely the elliptic nets of rank 1 (i.e., elliptic divisibility sequences) [ , Theorem 1.2.1],
and elliptic nets give pairings by [ ,§ 17,§ 18]. Here we will rather use the cubical point
of view (this is essentially the same thing by Section 4.8.5).

Analytically we have ¥,,(z) = ZE:)ZZ .
(x(P),y(P),1) is a level 3 cubical point given by level 3 affine Weierstrass coordinates,
then nP = ((¢,,(xp) W, (Xp, Yp), Wy (Xp,Yp), P2 (xp,yp)). Likewise, if P is a level 1 cubical
point normalised by Z; (P) = 1, then Z4 (nP) = P, (xp,yp). (As an aside, by Remark 4.15,
using division polynomial for cubical arithmetic means that 0 is normalised with respect to
—x/y rather than with respect to x/y).

So Doliskani’s supersingularity test can be reinterpreted as follows: given P normalised as
above, is Zz(pﬁ) = Z%(pﬁ) =12

Now if E is supersingular over F q (with maximal endomorphism ring), then E(F 7=

It follows from Sections 4.7 and 4.8 that if P =

(Z/(p + 1)7Z)2. We first sample a random point x(P) on the Kummer line; P lies either in

2These formulas, resulting from joint work with David Lubicz, were already promised more than one year
ago in [ , Remark 5.19], but see footnote *...
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E or its quadratic twist, so P is of order p + 1 or p — 1. In both cases, x(pP) = x(P), this
gives us a first test for a point order.

We can refine this test as follows: take P a cubical point of level 1 normalised by Z; (P) = 1,
and of order p 4+ 1, which we have checked via the equation x(pP) = x(P). We want to
compute the self Tate pairing e, ,1 (P, P). By Theorem 4.11 and Remark 3.13, if P is of

order p — 1, we can compute ep(P, P) by comparing Z (pﬁ) and Z; (P)=1.In particular,
Z1(pP) =1(ie. l/Jp(P) = 1)ifand only ifep_l (P,P) = 1. Andif Pis of order p + 1, we can
compute e, (P, P) by comparing Z; (pP) and Z;(—P) = —1. In particular, Z; (pP) = -1
(e ¢, (P) = 1) if and only if ep1(P,P) = 1. (We remark that ifA e F, = ]sz,

pA-P) = AP pP = pP so the Tate pairing is already reduced here.) So we can reframe
Doliskani’s supersingularity test as a self pairing test: is e, 1 (P,P) = 1 for a randomly
sampled P?

Lemmaé.1. LetP € E(]Fq) be of order p+1. Then the reduced Tate selfpairingeT,pil (P,P) =
1 if and only if the elliptic curve quotient E' = E/(P) has its full p + 1-torsion rational over

E,.

Proof. This follows from the geometric interpretation of the Tate pairing, see [ ,
Example 5.14]. [l

In particular, if E is supersingular, then since E/(P) has the same Galois structure than E
we always have er , 1 (P) = 1: self pairings are trivial on a supersingular curve. (This can
also be seen more directly as follows: if P is of order {, ey o(P) = ey (P, TP’ — P’) where
{P" = P, but 77 is a scalar for a supersingular curve and the Weil pairing is alternate, hence
the self pairing is trivial.) Lemma 6.1 thus gives an alternative proof that l/Jp(x(P)) =41
for a supersingular curve.

We can also use Lemma 6.1 and our reinterpreration of Doliskani’s supersingularity test as
a self pairing test to give a precise description of the points P € E(F,) such that Doliskani’s
test fails for an ordinary elliptic curve E: P has to be of p + 1-torsion and the isogeneous
curve E/(P) has to have fully rational p + 1-torsion. Using the group structure of isogeny
volcanoes of ordinary curves, this allows to refine the probability of failure (depending on
where E is in the volcano).

In practice, in isogeny based cryptography we work with the Montgomery model. We can
thus use the fast cubical ladder formulas from Section 5.2 to do our self pairing test: sample
a random point x(P), start with P such that X2(1~3) = x(P), Z, (P) = 1 in level 2 affine
cubical coordinates, and compute whether pP = P. This test both that P is of p + 1 torsion
and that the self pairing is trivial (or rather its square, since we are using level 2 coordinates).

We recover precisely the fast supersingular test from [ ]. In that paper, the authors
apply the above strategy, but using the usual projective Montgomery ladder to compute
pP. As we have seen in Section 5.2, the standard projective ladder almost correctly com-
putes the cubical arithmetic, and it is easy to keep track of a correcting factor to apply
afterwards to obtain the correct cubical point pP. Now comparing Algorithms 5.4 and 5.5
with [ , Algorithm 1], we can check that this correcting factor is precisely the factor
from [ , Proposition 2]. Since the authors of [ ] use this correcting factor in their
fast supersingularity test [ , Algorithm 6], they are really computing the true cubical
exponentiation [ ]! (We remark that computing 1/x(P) and then directly using the
formulas Algorithms 5.4 and 5.5 for the cubical ladder would save 1M by bit.)
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6.4. Monodromy leak and the DLP. Our last non pairing application, and perhaps the most
important one, is a new devastating side-channel attack against the Montgomery ladder on
Montgomery curves, which we call the monodromy leak, a type of projective coordinate
leak.

Let P € E(F,) be a point of {-torsion, with ¢ prime for simplicity. It is known since
[ ] that a projective coordinate leak, that is leaking the individual projective coordinates
X(mP),Y (mP), Z(mP) which are computed during the scalar multiplication, where mP =
(X(mP) : Y(mP) : Z(mP)), would yield information on the secret 7. The attack of | ]
can only recover a few bits of 11, so the attack was only used for attacking the signature scheme
ECDSA. For ECDSA, obtaining a few bit of leakage for each signature, combined with lattices
methods, allows to recover the full secret key. This attack was revisited in [ ] where
the authors found that many implementation were still vulnerable to projective coordinate
leaks, and extended it to the Montgomery ladder.

By contrast, our monodromy leak attack on the Montgomery ladder is much more devas-
tating, since it allows to recover the full key via only one leak, by reduction to some DLPs in
F;.

! The main idea is as follows: first we can assume that yty € F ;, otherwise pairings already
give an efficient reduction from DLPs to E(F ) to DLPs in F ; Under this hypothesis, for

apoint P € E[{](F ) there is only one rational cubical point P which is still of ¢-torsion.

We will call P the canonical lift of P, and denote it also by P. (We already considered cubical
points of {-torsion in Section 6.2.) We can efficiently compute P by taking an arbitrary rational
cubical lift P and then computing P = uP whereu = 1 mod andu = 0 mod g — 1;
such a u exists because £ is prime to g — 1 by assumption. In particular, for any m, we have
mP = mP (this can also be proved by unicity and the compatibility relations of the cubical
arithmetic), and if P = AP, mP = A" P, (We remark that [ , Chapter 19; ] also
compute an elliptic net representation of the level 1 canonical lift P for elliptic curves. Their
formula to compute P is slightly different than the one above, but do give the same canonical
lift.)

Now the cubical arithmetic is a mix of elliptic curve arithmetic and Fj arithmetic, and
we can use P to try to reduce to DLPs in 7. Namely, for the Montgomery ladder, one start
with a normalised point P = (x(P) : 1) in order to reduce the number of multiplications.
Let us define P = (x(P), 1), and assume we obtain a projective coordinate leak of m.P =
(X(mP), Z(mP)). Now assume furthermore that m.P was computed using the cubical
formulas, in other words X (mP), Z(mP) gives mP exactly. Then we have P = AP with
A =1/Z(P), and mP = A"’ mP.

Now we know mP = (X(mP) : Z(mP)) because it is public, we know P = (x(P),1)
because P is normalised, we also know mP = (X (mP), Z(mP)) because we have assumed
we had a projective coordinate leak. We know the canonical lift P, and we can also compute
mP even if we don’t know 1, because the canonical lift mP of mP is precisely equal to mP.

So we obtain an equation of the form Am? = 7 (mP) ) Z(mP), where the only unknown
is m. Solving a DLP in F7 followed by a square root allows to recover the possible values of
m modulo g — 1, or more precisely modulo the order of A.

In practice, we know that in the Montgomery ladder implementation, m is as small as
possible, so in particular is smaller than #E(F,) < q + 1 + 2,/g. We first solve the DLP

in ]Fj; to recover m2 modulo the order N of A (so that N | q — 1). We then test all possible
square roots, there are at most 2/ such square roots where f is the number of distinct prime
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factors of g — 1. Unless g — 1 is very smooth, computing all square roots is not a bottleneck
compared to the DLP in FFj.

Now, for each possible square root m modulo N, we need to test all possibilities m + aN
up to the upper bound m < #E(]Fq). The number of possibilities is in O(g/N), the smaller
the order of A the more tries we need, but on the other hand the lower the probability to
stumble on such a A. By Merten’s theorem, the average number of tries for a random A is in
Odogq). N

Note that the above method applies even if P is not normalised, as long as we know both
D (say because the implementation is public) and mP (because of a projective coordinate
leak).

However, this only applies because we know that m < £. If we don’t know the projective
coordinate leak 7P, we can still take an arbitrary cubical point P (well not quite arbitrary,
we want to choose Z (mP) such that Z(mP)/Z(mP) is in the group generated by A). Then
we have mP = MP for some M = m mod {, but this time we only have the bound
M < #(g — 1). The cubical arithmetic allows to recover the value of M modulo g — 1 (or
rather modulo N the order of A), which gives zero information on the value of M modulo
€ since € is prime to g — 1. In other words, the monodromy attack only applies if we know
the number (or we can pin this number in a small interval) of loop around £ we did when
computing M.P.

Remark 6.2 (Biextension monodromy leak). We can also do a monodromy attack using
biextension arithmetic, this requires more information but bypass the square root step.
Namely, still with our hypothesis that { is prime to g — 1, given another rational point Q,
there is a unique rational biextension element gp  above P of order € for x;. We have
$p'p = Smp,p-

It follows that if through some projective coordinate leak we are able to recover both some
biextension element ¢p p = Agp p and gp'5" = A™§,,p p, we can recover m modulo the
order N | g — 1 of A by solving an equatiox{ A =C.

In practice, this could happen if we have a projective coordinate leak of both mP, (m+1)P
(this is not unreasonable since the Montgomery ladder computes mP, (m + 1)P).

Namely, we know that on input the ladder start with the normalised point P = (x(P),1);
we compute 2P by a cubical doubling, and represent gp,p by the cubical points [P, P;0,2P].
Then gl*,lpm is represented by [P, mP;0, (m + 1)P], soa projective leak of mP, (m + 1)P
indeed gives us gl*glpm (As an aside: §,,,p p = [P, mP;0, (m + 1)P].)

Now, all the discussion above assumes that the Montgomery ladder is implemented using
the cubical arithmetic; which is definitively not the case. But we saw in Section 1.2 that it is
very close to the cubical ladder.

More precisely, the projective doubling formula is exactly the same as in Algorithm 5.4.
However, the projective differential addition formula uses the equation

U = (X(P) - Z(P))(X(Q) + Z(Q))
V = (X(P) + Z(P))(X(Q) — Z(Q))
X(P+Q)=ZP-QU+V)?
Z(P+Q) =X(P-QU-V)?
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which differs from the cubical differential addition Algorithm 5.5 by the factor 4X (P —
QZ(P - Q).

Taking this into account, we need to solve a slightly different degree two equations to
recover m. Namely, let [mP] be the cubical point computed by the usual Montgomery ladder.

Then by [ , Proposition 2], [mP] = (4x(P))’”2”m>_mmﬁ where [(m) is the binary
length of m (see Section 6.3 for the link between the division polynomials in the statement
of | , Proposition 2], and cubical arithmetic).

Using P = AqP, Q = mP, mP = /\TzrrfP, [mP] = (4x(P))"2 ™ =m,P, and since
we know P, Q, hence P, Q, and also P and [mP] by assumption that we have a projective
coordinate leak on the standard projective ladder, we can recover A, such that [mP] = A,mP
and we have the following equation where the only unknown is m:

(21) (4x(P)"2 " TIARE = A,

In practice, we also know the length [(m) of m. So we fix { a primitive root of F}, and
compute the dlps with respect to {: dlpg.(4x(P) ), dlpé()\l ), dlpé.(/\z ). Then by Equation (21),
m is a solution of the degree two equation:

Xz(dlpg.(/\l) - dlpé.(4x(P))) + 2tom dlpé(4x(P))X - dlpé(}\z) =0.
We then proceed as before. The above discussion can thus be summarised in:

Theorem 6.3. Let P = (X (P), Z(P)) be a known public point of order L on a Montgomery
Kummer line associated to a Montgomery curve E/F ; (here we assume that we know not only
P, but X (P), Z(P), in practice P is normalised via Z(P) = 1). Assume that { is prime to g — 1.

Letm < ¢, and let mP = (X (mP), Z(mP)) be compute by the standard projective Mont-
gomery ladder. Assume that we obtain a projective coordinate leak of mP, i.e. we not only know
x(mP) = X(mP)/Z(mP) but also X(mP),Z(mP).

Let u be the number of distinct prime factors of g — 1. Let P = (X(P,Z(P)) be the unique
canonical cubical rational point above P, N | g — 1 be the multiplicative order of Z(P)/Z(P)
andv = (g —1)/N.

Then one can recover m by solving three discrete algorithms in ¥, followed by an algorithm
polynomial in log g, 2% and v.

Any constant time division algorithm to compute x (mP) = X(mP)/Z(mP), such as the
one employed by NaCL, prevents this attacks. Compared to [ ], we can recover m fully
from one leak, but we need to assume that we know X (P), Z(P), not only P. So another
protection is to mask P by multiplying X (P), Z(P) by some random scalar factor before
doing the exponentiation.

For more details on the monodromy leak (and some wild speculations), we refer to
[ ,$7.2]and to [ ] for a toy implementation.

7. PERSPECTIVES

We have seen that biextensions provide a convenient framework to study pairings as mon-
odromy information, and that the efficient representation of biextension elements provided
by cubical points gave fast formulas to compute pairings on elliptic curves.

In this paper, we have mainly looked in Section 5 at cubical points on Montgomery
Kummer lines represented by level 2 affine coordinates. It would be interesting to look at
other models and also explore further a mix of projective and affine coordinates (notably
in the Edwards model), as suggested in Remark 4.18. There is also potentially room for
optimisation of the adding formulas in the double and add biextension algorithm. We have
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also seen in Section 6.1 that the cubical arithmetic could potentially be interesting for pairing
based cryptography, not only for generic pairing computations. In fact, we saw in this paper
that biextensions and cubical arithmetic shed new light (and gave new formulas) for Miller’s
algorithm.

In the other direction, one could ask if the refinements of Miller’s algorithm from [ ;

; ] (see Section 6.1.2) could also be applied in some sense to the cubical ladder.
Notably so far in our explicit cubical arithmetic, we have only used doublings, differential
additions and three way additions, but not the more general algebraic Riemann relations
from Section 4.1. Although the general Riemann relations are induced by the squared torsor
structure, and explicit formulas can be given via the differential addition formulas (see
Section 4.8.3 for an example), expressing the general Riemann relations through differential
addition formulas involve some divisions by 2, hence potentially points in field extensions,
while using the formulas from Section 4.1 we can stay in the base field. Notably, the work of
[ ] suggest looking at the following Riemann relations to compute the cubical expo-
nentiation: [ (mqy +my)P+Q, —miP+Q, —m,P+ Q, —Q; —(mq +my) P, m{ P, m,yP,2Q)].
Maybe some other type of Riemann relations could also be useful.

An interesting direction would also be to look at the arithmetic of a general biextension X
associated to an isogeny rather than just a polarisation, and see if it can help to compute the
Weil-Cartier pairing ef and the generalised Tate pairing. It also could be helpful in deriving
isogeny formulas; see Section 6.2 for why the cubical arithmetic can help to understand
isogenies an their fibers.

A last question is whether this point of view can help about pairing inversion (we saw
in Section 6.4 that it gave new insight on the dlp). From the point of view of biextensions,
the reduced Tate pairing inversion is just the computation of a g — 1-th root in some theta
group. But taking root of elements is not faster than a dlp for a generic group.
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