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Abstract. Recent improvements to garbled circuits are mainly focused
on reducing their size. The state-of-the-art construction of Rosulek and
Roy (Crypto 2021) requires 1.5κ bits for garbling AND gates in the
free-XOR setting. This is below the previously proven lower bound 2κ in
the linear garbling model of Zahur, Rosulek, and Evans (Eurocrypt 2015).
Recently, Ashur, Hazay, and Satish (eprint 2024/389) proposed a scheme
that requires 4/3κ + O(1) bits for garbling AND gates. Precisely they
extended the idea of slicing introduced by Rosulek and Roy to garble
3-input gates of the form g(u, v, w) := u(v +w). By setting w = 0, it can
be used to garble AND gates with the improved communication costs.
However, in this paper, we observe that the scheme proposed by Ashur,
Hazy, and Satish leaks information on the permute bits, thereby allowing
the evaluator to reveal information on the private inputs. To be precise,
we show that in their garbling scheme, the evaluator can compute the
bits α and β + γ, where α, β, and γ are the private permute bits of the
input labels A, B, and C, respectively.

1 Introduction

Garbled Circuits (GC) are one of major techniques for secure two-party com-
putation, which allows two mistrusting parties to jointly compute functions on
their private inputs while revealing only the outputs of the functions and nothing
else. Since their concept was first introduced by Yao [11], one line of recent
research [2,8,7,9,6,4,12,10] has been dedicated to reducing the size of the garbled
circuit ciphertexts that should be sent from one party, the garbler, to the other
party, the evaluator.

The current state-of-the-art construction for garbled circuits is due to Rosulek
and Roy [10] (dubbed as RR21 throughout the paper), where they consider a
gate-by-gate garbling of Boolean circuits expressed using XOR and AND gates.
In their scheme, the size of the garbled AND gates is 1.5κ bits (κ is the security
parameter), while no communication is required for XOR gates. Their result
surpassed the previous lower bound (2κ bits for AND gates with free-XOR) for

⋆ In a recent version of the paper (eprint 2024/389 [1]), the authors seem to be aware
that an attack on their proposed scheme exists, although the details on the attack is
not publicly available yet. This paper is an independent work that also addresses an
attack on their scheme.



the size of garbled circuits, which is obtained in a model called linear garbling
defined by Zahur, Rosulek, and Evans [12]. Their optimization was made possible
by a new technique, called slicing-and-dicing, that is beyond the definition of the
linear garbling model.

Following to the previous works, Ashur, Hazay, and Satish [1] recently proposed
a garbling scheme that garbles AND gates requiring communication costs of only
4/3κ+O(1) bits, thus improving upon the previous state-of-the-art construction.
Their core idea is to extend the slicing-and-dicing technique by Rosulek and Roy.
Precisely, they suggested to garble 3-input gates of the form g(u, v, w) := u(v+w)
(where the function is defined over the binary field F2) instead of directly garbling
AND gates. They also suggested to slice the input labels into 3 pieces, whereas
the RR21 construction uses 2-sliced input labels. By setting w = 0 in g(u, v, w),
one can use their garbling scheme to garble AND gates.

Our Contributions. However, in this paper, we show that their garbling scheme
leaks private information on inputs, thereby jeopardizing the security guarantee
that should be satisfied in the garbling scheme. Precisely, we prove that the
evaluator can compute the bits α and β + γ, where α, β, and γ are private
permute bits of the input labels A, B, and C, respectively.1 The permute bits are
used to mask the private inputs u, v, and w of the gate g, thus it should not be
revealed to the evaluator to satisfy the privacy property of the garbling scheme.

Our Techniques. Previous works such as [10,1] regarded a garbling scheme as a
system of linear equations. Our core idea in this paper is to reformulate this system
of linear equations in a garbling scheme as an algebraic equation. Specifically,
we express a garbling scheme as an algebraic equation taking into account the
evaluator’s color bits as variables of this equation. To provide a concrete example,
let us consider the case of garbling AND gates. In this case, we consider the AND
gate as a function g(u, v) = uv, where the gate inputs u and v take values in F2.

As in the previous works, we assume the point-and-permute technique [2] and
the free-XOR technique [7]. Let Ax and By the input labels corresponding to the
color bits x and y held by the evaluator, respectively. We also define C by the
output label corresponding to the logical value 0 at the output wire. We set the
bitstring ∆ be the global offset in the free-XOR setting. Assume that the values
α and β in F2 are the permute bits secretly held by the garbler, i.e. u = x+ α
and v = y + β are the logical values of the input wires.

We realize that the previous garbling scheme can be represented as the
following form:

C + g(x+ α, y + β)∆ = F(x, y),

where F is a function that takes x and y as inputs. Indeed, the system of linear
equations considered in the previous works can be realized by evaluating the

1 Each of the input labels is a κ-bit string that is assigned to each of the inputs of the
gate depending on their logical values. The input labels A, B, and C correspond to
the input u, v, and w, respectively.
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above equation at all possible choices of the color bits (x, y) ∈ F2 × F2 and
stacking them together.

This simple idea allows us to represent a garbling scheme into more compact
and simple form. By doing so, it becomes more feasible to find a proper function
F that provides us a correct garbling scheme. Especially, a major task in the
constructions by [10] and [1] was to find matrices called the control matrices to
complete the function F that leads us to a correct garbling scheme.

With the previous linear-algebraic representation, the RR21 construction
was able to find the control matrices only by an exhaustive computer search. In
the construction by Ashur et al., they explained a methodology how to find the
control matrices, but any explicit formula for them has not been provided.

However, interestingly, our algebraic representation allows us to provide an
explicit formula for the control matrices. Once the formula has been found, it
becomes obvious that the construction proposed by Ashur et al. leaks the permute
bits. We also apply our idea to the previous works including not only the classical
Yao’s circuit, but also the schemes such as the half-gate garbling scheme [12] and
the RR21 construction. Consequently, as a side result, we could provide more
general garbling equation for the half-gate scheme and explain that why the
RR21 construction still remains secure against our finding.

Moreover, we also extend our idea to any ℓ-input gates of degree d with
s-sliced input labels. As a result, we observe that if the only allowed queries
to the oracle are restricted to be a linear function of the input labels, then it
is impossible to garble any gates of degree exceeding 2. This can be seen as a
generalized version of the separation result (Theorem 3) provided by Ashur et
al. [1]. For gates of degree 2, we provide a sufficient condition for our attack to
succeed. It can be a suggestion how not to construct a garbling scheme in order
to obtain better communication costs.

2 Preliminaries

Throughout the paper, we will work over finite fields K of characteristic 2 and
the bivariate polynomial ring K[x, y]. We write x+ y / xy for Boolean operations
XOR/AND of x, y ∈ F2, respectively. We denote a vector and its entries as
−→v = (v1, . . . , vn). Matrices are written in the bold capital characters such as M.

2.1 Garbling Schemes

We use the garbling scheme abstraction introduced by Bellare, Hoang, and
Rogaway [3]. In particular, as in [12], we concentrate on garbling circuits rather
than garbling any form of computation. A garbling scheme consists of the following
algorithms:

• Gb: On input 1κ and a Boolean circuit f , outputs (F, e, d), where F is a
garbled circuit, e is encoding information, d is decoding information.
• En: On input (e, x), where e is as above and x is an input suitable for f ,

outputs a garbled input X.
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• Ev: On input (F,X), outputs a garbled output Y .
• De: On input (d, Y ), returns an output y.

Correctness. A garbling scheme defined as above is correct, if (F, e, d)← Gb(1κ, f),
De(d,Ev(F,En(e, x))) = f(x) holds all but negligible probability.

Privacy. Informally, we say a garbling scheme satisfies privacy, if (F,X, d) reveals
no information about x other than f(x). In our discussion, it is enough to consider
the privacy property. For further details on other security properties such as
obliviousness and authenticity, refer to Bellare, Hoang, and Rogaway [3].

3 Algebraic Understanding of Garbling Schemes

In [10], they regarded a garbling scheme as a system of linear equations. Based
upon this idea, they could obtain an efficient garbling scheme that improves upon
the previous state-of-the-art construction. In this section, we reformulate this
idea and describe a way to understand the existing garbling schemes from a more
algebraic point of view. We believe that our approach provides more compact
and simpler description of garbling constructions.

3.1 Review on Existing Schemes

To be precise, we begin with reviewing the existing schemes from our algebraic
perspective. For now, we focus on a gate g with input wires a, b and output wire
c. If g is the AND gate, we have c = g(a, b) = a · b for a, b ∈ F2. From now on we
assume the point-and-permute techniques [2].

Notations.

– (Permute bits) The values α and β are secret permute bits that are only
known by the garbler.

– (Input labels) Aα, Bβ ∈ {0, 1}κ are wire labels corresponding to the false
value on input wires a and b, respectively.

– (Output label) C ∈ {0, 1}κ represents the output wire label corresponding to
the false value on the output wire c.

– (Color bits) When Ax and By are held by the evaluator, we assume that the
subscripts, x and y, referred to as color bits, are known by the evaluator.

– (Free-XOR) For each wire label W , it holds W0 +W1 = ∆, with the addition
being performed over F2. Here ∆ ∈ {0, 1}κ is a global offset.

– (Sliced labels) Given an integer s, we represent the wire labelW = W 1∥ · · · ∥W s

as W⃗ = (W 1, . . . ,W s), where each W i is κ/s-bits. If s = 1, we simply write

W instead of W⃗ .

With the above notations, the wire labels Ax and By correspond to the logical
values u := x+ α and v := y + β, where the addition is computed over F2.
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As a matter of mathematical conventions, we abstract strings in {0, 1}κ as
fields elements in F2κ . However, the field structures that we are only interested in
are additions and multiplications by F2 (no multiplications by full field elements
are required).

Yao’s Garbled Circuits. We describe the classical Yao’s garbled circuits from our
perspective. In Yao’s circuit, the garbler generates the ciphertexts Gx,y for each
(x, y) ∈ F2 × F2 in a way that the following equation holds:

C + (x+ α)(y + β)∆ = Gx,y +H(Ax, By). (1)

In other words, decryption of Gx,y under the key H(Ax, By) yields to the value
C +∆, the output wire label corresponding to the logical value 1, if and only if
(x+ α)(y + β) = 1.

Let us consider Gx,y and Hx,y := H(Ax, By) as functions in variables x, y
with their values in F2κ . Particularly, we only consider x, y that take values in
F2, then we may write the functions as formal summations using group algebra:

Tκ := F2κ
[
F2[x, y]/(x

2 + x, y2 + y)
]

=
{∑

f af · f | af ∈ F2κ , f ∈ F2[x, y]/(x
2 + x, y2 + y)

}
.

For instance, using Lagrange polynomials, we can write:

Gx,y := G0,0(x+ 1)(y + 1) +G0,1(x+ 1)y +G1,0x(y + 1) +G1,1xy ∈ Tκ

Hx,y := H0,0(x+ 1)(y + 1) +H0,1(x+ 1)y +H1,0x(y + 1) +H1,1xy ∈ Tκ.
(2)

To generate the ciphertexts, the garbler chooses G⃗ := (G0,0, G0,1, G1,0, G1,1)
so that Equation (1) should hold for any choices of (x, y) ∈ F2×F2. By comparing
the coefficients of 1, x, y and xy in the both sides, we obtain the following system
of linear equations:

C + αβ∆ = G0,0 +H0,0

β∆ = G0,0 +G1,0 +H0,0 +H1,0

α∆ = G0,0 +G0,1 +H0,0 +H0,1

∆ =
∑

i,j∈F2
(Gi,j +Hi,j).

(3)

The garbler produces the desired ciphertexts by solving this system of equations
with respect to G⃗. One might easily check that it is equivalent to the system of
linear equations described in [10].

For readers, it seems to be just a matter of wordplay. Nevertheless, it provides
an intriguing intuition into the understanding of garbled schemes as we shall see
below.

Row Reduction Technique. In Equation (3), all equations have the term G0,0 in
common. Therefore, simply canceling out the term will not affect on solving the
system of linear equations. It allows us to set G0,0 = 0 ∈ F2κ . It reduces the size
of ciphertexts from 4κ to 3κ.
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Half-Gate Garbling. Zahur, Rosulek and Evans [12] showed that the size of
ciphertexts further reduces to 2κ. It is called the half-gate garbling technique.
Their construction has two main differences: First, the ciphertexts Gx,y are
generated using only two ciphertexts G0 and G1 through the formula Gx,y :=
xG0 + yG1, rather than four independent ciphertexts. Second, the output labels
are encrypted using the key H(Ax) +H(By) instead of H(Ax, By).

We provide a more general explanation of this technique from our point of
view. In the technique, the garbling scheme can be represented as the following
equation:

C+(x+α)(y+β)∆ = xG0+yG1+H(Ax)+H(By)+RA(x, y)·Ax+RB(x, y)·By,
(4)

where RA, RB are linear polynomials in F2[x, y] to be determined later. Similar
to Equation (2), we write the following terms as polynomials in Tκ:

H(Ax) = (x+ 1)H(A0) + xH(A1)
H(By) = (y + 1)H(B0) + xH(B1)

Ax = A0 + x∆
By = B0 + y∆.

(5)

Let us set RA = y and RB = 0 which is equivalent to the setting of [12]. As before,
one substitutes Equation (5) into Equation (4) and compares the coefficients. We
have

C + αβ∆ = H(A0) +H(B0)
β∆ = G0 +H(A0) +H(A1)
α∆ = G1 +H(B0) +H(B1).

(6)

The garbler determines the output label C and the ciphertexts (G0, G1) using
the above equation.

In general, setting RA = a0 + a1x+ a2y and RB = b0 + b1x+ b2y such that
a2 + b1 = 1 leads us to a valid garbled circuit. This can be seen as follows: The
expression RA(A0 + x∆) +RB(B0 + y∆) contains the term xy∆ if and only if
a2 + b1 = 1. Since the quadratic term xy∆ gets cancelled out in Equation (4),
the values of C and G0, G1 can be found by comparing the coefficients of 1, x
and y.

From our algebraic viewpoint, it is interesting to observe that their modi-
fications involving the use of xG0 + yG1 and H(Ax) +H(By) instead of Gx,y

and H(Ax, By) enabled the representation of the garbling equation without any
quadratic terms. Consequently, this reduced the number of free variables that
have to be determined.

RR21’s Garbling Scheme. Rosulek and Roy [10] proposed a garbling scheme,
dubbed as RR21 from now on, that further reduces the size of the ciphertexts from
2κ to 1.5κ+O(1). One of their primary ideas involves splitting the output wire
label into two parts, say C = (CL∥CR), where each half is of κ/2 bits. Then they
discuss how to derive each half using three well-structured κ/2-bits ciphertexts
G0, G1 and G2, along with input labels. It should be noted that a straightforward
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application of the half-gate strategy would not yield any enhancements: The size
of the garbled gates for each half would be of 2 · (κ/2) bits.

To obtain a further reduction on the garbled gate size, the RR21 construction
implicitly ensures that two of the four κ/2-bits ciphertexts will be identical.
For instance, suppose that (GL

0 , G
L
1 ) and (GR

0 , G
R
1 ) are ciphertexts for the left

and right halves of C, respectively. They enforce GL
1 = GR

0 and demonstrate
how to construct garbling schemes satisfying this condition. To accomplish this
challenging task, they propose employing extra oracle queries on Ax+By alongside
Ax and By. Then the idea is to use the following combination of oracle queries
to mask the each half of the output labels:

CL + (x+ α)(y + β)∆L = xGL
0 + yGL

1 +H(Ax) +H(Ax +By) + · · · ,
CR + (x+ α)(y + β)∆R = xGR

0 + yGR
1 +H(By) +H(Ax +By) + · · · .

(7)

Keeping in mind the above, we interpret the RR21 construction from our
algebraic viewpoint. Again, we can write H(Ax +By) as follows:

2

H(Ax +By) = (x+ y + 1)H(A0 +B0) + (x+ y)H(A0 +B1).

Then we have [
H(Ax) +H(Ax +By)
H(By) +H(Ax +By)

]
= M · H⃗,

where

M :=

[
x+ 1 x 0 0 x+ y + 1 x+ y
0 0 y + 1 y x+ y + 1 x+ y

]
and H⃗ := (H(A0), H(A1), H(B0), H(B1), H(A0 +B0), H(A0 +B1))

⊤.
Interestingly, we observe that the y-coefficient of H(Ax) +H(Ax +By) and

the x-coefficient of H(By) + H(Ax + By) are identical to each other. Let us
enforce GL

1 = GR
0 as desired. By properly rearranging and rewriting Equation (7),

the RR21 construction can be restated as the following equation:

V

[
C⃗

G⃗

]
= MH⃗ +RA(A⃗0 + x∆⃗) +RB(B⃗0 + y∆⃗) + (x+ α)(y + β)∆⃗, (8)

where

V :=

[
1 0 x 0 x+ y
0 1 0 y x+ y

]
, C⃗ :=

[
CL

CR

]
, A⃗0 :=

[
AL

0

AR
0

]
, B⃗0 :=

[
BL

0

BR
0

]
, ∆⃗ :=

[
∆L

∆R

]
,

and G⃗ := (G0, G1, G2)
⊤ = (GL

1 + GL
0 , G

L
1 + GR

1 , G
L
1 )

⊤. Here, RA and RB are
2× 2 matrices over F2[x, y] to be determined later.

Observe that the y-coefficient of the upper and the x-coefficient of the lower

in V

[
C⃗

G⃗

]
coincides with each other. It is exactly equivalent to saying that M and

2 With the free-XOR constraint, recall that H(A0 +B0) = H(A1 +B1) and H(A0 +
B1) = H(A1 +B0).
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V have the same column space over F2. Indeed, V is a column-reduced matrix of
M where the operation is carried over F2.

Once RA and RB are determined (as we shall describe soon how to determine

them), the garbler generates the output label C⃗ and the ciphertexts G⃗ analogously
to prior constructions, ensuring that Equation (8) holds for all x, y ∈ F2.

Choosing Control Matrices. We now proceed to explain the procedure for deter-
mining the matrices RA and RB . According to the linear-algebraic representation
in [10], this step is equivalent to find out the control matrix. Although, according
to their linear-algebraic representation, they managed to identify the control
matrix solely through an exhaustive computer search, we can provide explicit
formulas for RA and RB due to our algebraic perspective. Thus, we think that our
representation might prove beneficial in future investigations aimed at enhancing
garbling schemes. This could potentially constitute an independently interesting
line of research.

First of all, we note that M and V share the same column space. Therefore,
it suffices to guarantee that the remaining term of Equation (8) also belongs to

this common space, ensuring the existence of C⃗ and G⃗ satisfying Equation (8).
More precisely, it is equivalent to the following:

1. The y-coefficient of the top and the x-coefficient of the bottom in RA(A⃗0 +

x∆⃗) +RB(B⃗0 + y∆⃗) + (x+ α)(y + β)∆⃗ coincide with each other;
2. The xy-term in RA(A⃗0 + x∆⃗) +RB(B⃗0 + y∆⃗) + (x+ α)(y + β)∆⃗ vanishes.

To find RA and RB satisfying the aforementioned conditions, we write
RX = RX,0 +RX,1x+RX,2y for X ∈ {A,B}, where each RX,i is a 2× 2 binary
matrix. Substituting this to Equation (8) and imposing that x2 = x and y2 = y
yield

V

[
C⃗

G⃗

]
= MH⃗ +

(
RA,1A⃗0 +RB,1B⃗0 +

(
RA,0 +RA,1 + βI

)
∆⃗
)
x

+
(
RA,2A⃗0 +RB,2B⃗0 +

(
RB,0 +RB,2 + αI

)
∆⃗
)
y

+
((

RA,2 +RB,1 + I
)
∆⃗
)
xy + (constant),

(9)

where I is the 2-dimensional identity matrix.
As the aforementioned conditions should satisfy for arbitrary choices of A⃗0, B⃗0,

and ∆⃗, the conditions translate to the following system of equations:

RA,2 +RB,1 + Is = 0[
0 1

]
RA,1 =

[
1 0

]
RA,2[

0 1
]
RB,1 =

[
1 0

]
RB,2[

0 1
] (

RA,0 +RA,1 + βI
)
=

[
1 0

] (
RB,0 +RB,2 + αI

) (10)

Solving the above equations provides us the following formulas for RA and RB :

RA,1 =

[
a1 a2
a3 a4

]
, RA,2 =

[
a3 a4
b3 b4

]
, RA,0 =

[
c1 c2
c3 c4

]
RB,1 =

[
a3 + 1 a4
b3 b4 + 1

]
, RB,2 =

[
b3 b4 + 1
e3 e4

]
, RB,0 =

[
f1 f2
f3 f4

]
,
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where f1 = a3+b3+c3+α and f2 = a4+b4+c4+β+1 and all the other unspecified
entries are arbitrary binary elements. One might observe that (RA,RB) is a
14-dimensional space.

To garble a gate, the garbler must select a pair of matrices (RA,RB) from the
set of 214 possible choices. The garbler then needs to share this selection with the
evaluator so she can utilize it in order to decrypt the encrypted gate. However,
unlike the half-gate scheme, (RA,RB) are dependent on the choice of the secret
permute bits α and β. As a result, providing the matrices (RA,RB) in clear to
the evaluator would violate the privacy property of the garbling scheme. Rosulek
and Roy addressed this challenge by incorporating the concept of dicing, initially
proposed by Kempka, Kikuchi, and Suzuki in [5]. In a nutshell, the method
involves encrypting the matrices (RA,RB) and sending the resulting ciphertexts
to the evaluator, ensuring that she can only obtain a decryption the ciphertexts
on her active input labels. Precisely, if Ai and Bj are the evaluator’s active input
labels, then she will solely be capable of obtaining the value of (RA(i, j),RB(i, j)),
rather than having access to the entire information on (RA,RB). For further
clarification, we have provided additional details regarding the dicing technique
from our perspective in Appendix A.

4 Analysis on Sliced Garbling

4.1 A Genearlized Framework for Garbling Schemes

In this section, we provide a generalized framework for constructing garbled
gates based on the observations made in Section 3. For simplicity of discussion,
we primarily concentrate on a gate g with three fan-ins and a single fan-out
throughout this section. Nonetheless, it is evident that similar arguments are
still valid for any gate g with a higher fan-in.

To begin with, we first re-establish some essential notation. Let g be a gate
with input wires a, b, c and output wire d.

Notations.

– (Permute bits) The values α, β, γ ∈ {0, 1} are secret permute bits that are
only known by the garbler.

– (Input labels) Aα, Bβ , Cγ ∈ {0, 1}κ are wire labels corresponding to the false
value on input wires a, b and c, respectively.

– (Output label) D ∈ {0, 1}κ represents the output wire label corresponding to
the false value on the output wire d.

– (Color bits) When Ax, By and Cz are held by the evaluator, we assume
that the subscripts, x, y and z, referred to as color bits, are known by the
evaluator.

– (Free-XOR) The value ∆ ∈ {0, 1}κ is a global offset secretly chosen by the
garbler. Then, W0 +W1 = ∆ for W ∈ {A,B,C}. Also, D+∆ represents the
output label corresponding to the true on the wire d.
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– (Sliced labels) Given an integer s, we represent the wire labelW = W 1∥ · · · ∥W s

as W⃗ = (W 1, . . . ,W s), where each W i is κ/s-bits. If s = 1, we simply write

W instead of W⃗ .

With the above notations, the wire labels Ax, By and Cz correspond to the
logical values u := x+α, v := y+β and w := z+ γ, where the addition is carried
out over F2.

In the following, we assume that only linear operations are allowed, apart
from querying random oracles on input labels, during the construction of garbled
circuits. Based on the prescribed observation, we specifically consider a garbling
scheme that can be represented as an equation of the following form:

D⃗ + g(x+ α, y + β, z + γ)∆⃗ = WG⃗+MH⃗ +RAA⃗x +RBB⃗y +RCC⃗z. (11)

Providing a concrete scheme involves the steps of specifying the matrices W,
M, RA, RB and RC (which are over F2[x, y, z]) and H⃗ (which are over F2κ/s),
whose detailed descriptions will be presented subsequently.

Once they are established, to garble a 3-input gate g, the garbler generates the
output label D⃗ and the ciphertexts G⃗ according to Equation (11). Upon receiving

the ciphertexts G⃗, the evaluator computes the right-hand side of Equation (11)
using her active input labels Ai, Bj , and Ck for some (i, j, k) ∈ F3

2. This allows the
evaluator only revealing the output label corresponding to g(i+α, j + β, k+ γ).3

Now, we proceed to explain on the idea of establishing Equation (11). It is
analogous to the description we have seen from Section 3. It can be summarized
as follows:

1. The vector H⃗ defined over F2κ/s consists of all possible responses of oracle
queries that can be made during the construction of garbled circuits.

2. The matrix M is a matrix over F2[x, y, z] with s rows. Each row of M is
determined by which combinations of oracle queries are to be used for the
corresponding slices.

3. The matrix V := [I|W] is chosen so that it has the same column space (over
F2) with the matrix M. Here, the matrix I is the s-dimensional identity
matrix. Note that we implicitly assumed that the column-reduced matrix of
M contains the identity matrix.

4. Each of the matrices RX for X ∈ {A,B,C} is chosen so that the vector

RAA⃗x +RBB⃗y +RCC⃗z + g(x+ α, y + β, z + γ)∆⃗ belongs to the same space
spanned by the columns of V.

From the preceding discussion, we observe that primary concerns in garbling
constructions revolve around (1) determining the matrix M and the vector H⃗,
and (2) deriving the matrices RX for each X ∈ {A,B,C}. Following the previous
works, we refer the matrix RX to the control matrix.

3 To simplify discussion, for now, let us presume that the evaluator obtains the values
of RA, RB and RC precisely at (i, j, k) in a certain way. In other words, we implicitly
assume the dicing technique is applied.
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4.2 Garbled Circuits for 3-Input Gates

Recently, Ashur, Hazay and Satish [1] proposed a scheme that garbles a 3-input
gate. They specifically claimed that a circuit of the form gtri(u, v, w) := u(v+w)
can be garbled at a cost of 4/3κ+O(1) bits. As its corollary, they insisted that
garbling an AND gate requires the same cost as garbling gtri by fixing w = 0.
This claim, if correct, would provide an asymptotic improvement compared to
the state-of-the-art requiring 3/2κ+O(1) bits.

However, in this paper, we demonstrate that their proposed construction
will leak permute bits, thereby jeopardizing the security guarantees offered by
garbling schemes. Prior to describe our main results, we begin by reviewing their
construction from our perspective provided in Section 4.1.

4.2.1 Review on Tri-gate Garbling Scheme

Choice of the matrix M and the vector H⃗. In their work [1], they suggested
splitting wire labels into three slices, i.e. s = 3, to garble the gate gtri. To encrypt
each slices of the output label D⃗ = (D1, D2, D3), they chose the following linear
combinations of oracle queries:

D1 + gtri(u, v, w)∆
1 = H(Ax) +H(By) +H(Ax +By + Cz) + · · ·

D2 + gtri(u, v, w)∆
2 = H(By) +H(Cz) +H(Ax +By + Cz) + · · ·

D3 + gtri(u, v, w)∆
3 = H(Ax) +H(Cz) +H(Ax +By + Cz) + · · · ,

where u := x+ α, v := y + β and w := z + γ.
Analogously to the previous constructions, we represent them into polynomials

as follows. For instance, under the free-XOR setting, we may write

H(Ax+By+Cz) = (x+y+z+1)H(A0+B0+C0)+(x+y+z)H(A0+B0+C1).

Let us define

H⃗ :=



H(A0)
H(A1)
H(B0)
H(B1)
H(C0)
H(C1)

H(A0 +B0 + C0)
H(A0 +B0 + C1)


.

Then this determines the matrix M in Equation (11) as follows:

M =

x+ 1 x y + 1 y 0 0 x+ y + z + 1 x+ y + z
0 0 y + 1 y z + 1 z x+ y + z + 1 x+ y + z

x+ 1 x 0 0 z + 1 z x+ y + z + 1 x+ y + z

 .

It can be easily verified that the following matrix V has the same column space
as M, where the span is carried out over F2κ/3 :

V =

1 0 0 x y 0 x+ y + z
0 1 0 0 y z x+ y + z
0 0 1 x 0 z x+ y + z

 := [I |W] . (12)

11



Here, I is the 3-dimensional identity matrix and W is the right (3× 4)-matrix.

Choosing the control matrix RX . Having determined the matrix M, the next step
is to choose the control matrix RX . Based on the linear-algebraic representation
by Rosulek and Roy [10], Ashur, Hazay and Satish [1] demonstrated how to find
the control matrices. While they elucidated the methodology for finding these
matrices, explicit formulas were not provided.

In the following, we provide explicit formulas for the control matrices based
on our algebraic perspective. As desired, this will show that how their proposed
construction leaks the secret permute bits, even though the dicing technique is
properly applied.

We begin with scrutinizing the subspace spanned by the columns of V =
[I |W]. Let us consider

span(V) :=

{
V ·

[
D⃗

G⃗

] ∣∣D⃗ ∈ F3
2κ/3 , G⃗ ∈ F4

2κ/3

}
.

We represent the matrix W as follows:

W = W1x+W2y +W3z,

where each Wi is a (3 × 4)-binary matrix derived from W. Note that these
matrices are formed by considering the coefficients of x, y, and z in the expansion
of W.

Let us consider a cokernel matrix P = [P1 | P2 | P3] of a binary matrix

formed by

W1

W2

W3

. In other words, we have the following:

P1W1 +P2W2 +P3W3 = 0,

where each Pi is a (5× 3) binary matrix.
Given ν⃗ ∈ span(V), we represent the vector ν⃗ as ν⃗ = ν⃗0 + ν⃗1x+ ν⃗2y + ν⃗3z,

where ν⃗i = WiG⃗ for some G⃗ ∈ F4
2κ/3 . Thus we have that

P1ν⃗1 +P2ν⃗2 +P3ν⃗3 = 0 for all ν⃗ ∈ span(V).

We shall use this relation to find the control matrices RX . We define this relation,
denoted by πV, as:

πV(X1,X2,X3) := P1X1 +P2X2 +P3X3,

where each Xi refers to a binary matrix with the same number of rows as the
columns in Pi.

In summary, the span by the columns of V is given by

span(V) =
{
ν⃗ | ν⃗ = ν⃗0 + ν⃗1x+ ν⃗2y + ν⃗3z and πV(ν⃗1, ν⃗2, ν⃗3) = 0 for ν⃗i ∈ F3

2κ/3

}
.

12



Recall that each RX has to be chosen so that

ρ := RAA⃗x +RBB⃗y +RCC⃗z + gtri(x+ α, y + β, z + γ)∆⃗

= RAA⃗0 +RBB⃗0 +RCC⃗0

+
(
xRA + yRB + zRC + (x+ α)(y + z + β + γ)I

)
∆⃗ ∈ span(V),

(13)

for any choices of A⃗0, B⃗0, C⃗0, and ∆⃗. Since ρ := ρ0 + ρ1x+ ρ2y+ ρ3z ∈ span(V),
we also have πV(ρ1, ρ2, ρ3) = 0. This condition must be satisfied for arbitrary

choices of A⃗0, B⃗0, C⃗0, and ∆⃗. Consequently, it is sufficient to analyze the equivalent
relationships by focusing on the coefficients of A⃗0, B⃗0, C⃗0, and ∆⃗ in Equation (13)
independently.

For instance, in Equation (13), the vector RAA⃗0 should belong to span(V)

for any A⃗0. Let us express RA = RA,0 +RA,1x +RA,2y +RA,3z, where each

RA,i is a 3× 3 binary matrix. Then, the requirement that RAA⃗0 ∈ span(V) for

all A⃗0 is equivalent to the following condition:

πV

(
RA,1,RA,2,RA,3

)
= 0.

Similar reasoning applies to the matrices RB and RC as well. As a result, we
have

πV

(
RX,1,RX,2,RX,3

)
= 0 for each X ∈ {A,B,C}. (14)

As we are interested in the case that x, y and z take the values in F2, we
impose the condition that x2 = x, y2 = y, and z2 = z. Then, the ∆⃗-term in
Equation (13) can be rewritten as follows:

ρ∆ := xRA + yRB + zRC + (x+ α)(y + z + β + γ)I
=

(
RA,0 +RA,1 + (β + γ)I

)
x+

(
RB,0 +RB,2 + αI

)
y +

(
RC,0 +RC,3 + αI

)
z+(

RA,2 +RB,1 + I
)
xy +

(
RA,3 +RC,1 + I

)
xz +

(
RB,3 +RC,2

)
yz.

The requirement that ρ∆∆⃗ ∈ span(V) for all ∆⃗ is equivalent to the following
equations:

πV

(
RA,0 +RA,1 + (β + γ)I,RB,0 +RB,2 + αI,RC,0 +RC,3 + αI

)
= 0

RA,2 +RB,1 + I = 0
RA,3 +RC,1 + I = 0
RB,3 +RC,2 = 0

(15)

We can construct binary matrices RX,i such that they fulfill the requirements
imposed by Equation (14) and (15). Then it will provide explicit formulas for
the set of all possible pairs of the control matrices. Although proving how this
construction exposes the permutation bits does not require comprehensive explicit
formulae, we nonetheless supply more details regarding the identification of RX,i

and their resulting explicit formulae in Appendix B for the sake of thoroughness.
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4.2.2 Analysis on Tri-gate Garbling

In the rest of this section, we show that the garbling scheme suggested by [1]
is insecure. To be precise, we show that the evaluator can reveal the values of
α and β + γ. Consequently, she would be aware of the logical values associated
with the input labels A⃗0 and B⃗0 + C⃗0. Furthermore, if the evaluator has prior
information about either β or γ, she can deduce all logical values related to her
active input labels.

As we have explicit formulae for the control matrices (RA,RB ,RC), as shown
in Equation (21), it becomes straightforward to verify the aforementioned claims.

For instance, if the evaluator’s active input labels are A⃗0, B⃗0 and C⃗0, then she
will have the values of (RA,RB ,RC) evaluated at (0, 0, 0). In other words, the
evaluator is aware of the matrix values (RA,0,RB,0,RC,0). As one might observe
from Equation (21), this directly implies the desired results: By adding the second
row of RA,0 to its third row, the evaluator obtains the vector (β + γ, 0, β + γ).
Likewise, if the evaluator adds the first row of RB,0 with its second row, she will
obtain the vector (α, α, 0).

In the following, we also provide alternative mathematical arguments for the
above claims without requiring explicit formulae for the control matrices. We
begin with the following simple observations:

1. Assuming that πV(X1,X2,X3) = 0 and πV(Y1,Y2,Y3) = 0, it follows that

πV(X1 +Y1,X2 +Y2,X3 +Y3) = 0.

Each of Xi and Yi are binary matrices with identical dimensions and an
equal number of rows as the columns in Pi.

2. For the matrix P = [P1 | P2 | P3], as given in Equation (20), there exists

non-zero vectors k⃗1, k⃗2 and k⃗3 such that

k⃗⊤i Pi−1 = k⃗⊤i Pi+1 = 0 and k⃗⊤i Pi ̸= 0

for every i = 1, 2, 3. Here, the subscript indices are computed modulo 3.
For instance, one might choose k⃗⊤1 = (1, 0, 0, 0, 0), k⃗⊤1 = (0, 1, 0, 0, 0), and

k⃗⊤3 = (0, 0, 1, 0, 0).

Based on the above observations, we prove the following theorem:

Theorem 1. Let V be as Equation (12). For a fixed triple (α, β, γ) ∈ F3
2, con-

sider a set R of three matrices (RA,RB ,RC) such that the vector ρ defined in

Equation (13) belongs to span(V) for any choices of A⃗0, B⃗0, C⃗0, and ∆⃗. Take an
element (RA,RB ,RC) from R. As before, let us write RX = RX,0 +RX,1x+
RX,2y +RX,3z. Given the triple of matrices (RA(i, j, k),RB(i, j, k),RC(i, j, k))
for i, j, k ∈ {0, 1}, one can compute the values of α and β + γ.

Proof. First, let us recall that ρ ∈ span(V) implies that Equation (14) and (15).
We prove the assertion case by case.
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Case 1. (i, j, k) = (0, 0, 0) : Recall that we are working over a field of characteristic
2. By adding the first equation in Equation (15) with πV

(
RA,1,RA,2,RA,3

)
= 0

(see Equation (14)), we obtain the following:

πV

(
RA,0+(β+γ)I,RB,0+RB,2+RA,2+αI,RC,0+RC,3+RA,3+αI

)
= 0. (16)

Multiplying k⃗⊤1 to the both side of Equation (16), we obtain:

k⃗⊤1 P1

(
RA,0 + (β + γ)I

)
= 0 =⇒ k⃗⊤1 P1RA,0 = (β + γ)k⃗⊤1 P1.

Since RA(0, 0, 0) = RA,0 is given, calculating k⃗⊤1 P1RA,0 and examining whether
it equals zero or not allows one to determine the bit of β + γ.

Similarly, adding the first equation in Equation (15) with πV

(
RA,1,RA,2,RA,3

)
=

0 leads us to obtain the equation of the following form:

πV

(
∗,RB,0 + αI, ∗

)
= 0.

Multiplying k⃗⊤2 to the both side of the equation, we obtain:

k⃗⊤2 P2

(
RB,0 + αI

)
= 0 =⇒ k⃗⊤2 P2RB,0 = αk⃗⊤1 P1.

From this relation, one can deduce the bit of α.

Case 2. (i, j, k) = (1, 0, 0) : In this case RA(1, 0, 0) = RA,0 + RA,1 is given.

Multiplying k⃗⊤1 to the first equation of Equation (15) provides us

k⃗⊤1 P1

(
RA,0 +RA,1 + (β + γ)I

)
= 0.

Thus, one can obtain the value of β + γ by calculating k⃗⊤1 P1

(
RA,0 +RA,1

)
.

To deduce the bit of α, we observe the followings: By adding πV

(
RA,1,RA,2,RA,3

)
=

0 and πV

(
RB,1,RB,2,RB,3

)
= 0 to the first equation of Equation (15), we obtain

the equation of the form

πV

(
∗,RB,0 +RA,2 + αI, ∗

)
= 0.

Since RA,2 = RB,1+I, we have πV

(
∗,RB,0+RB,1+(α+1)I, ∗

)
= 0. Therefore,

calculating the value of k⃗⊤2 RB(1, 0, 0) provides us the value of α.

Case 3. (i, j, k) = (0, 1, 0) : For the value of α, we can just use the first relation
in Equation (15). To obtain β + γ, use Equation (14) with X = A and B and
RB,1 = RA,2 + I.

Case 4. (i, j, k) = (0, 0, 1) : For the value of α, it is sufficient with the first
relation in Equation (15). To obtain β + γ, use Equation (14) with X = A and
C and RC,1 = RA,3 + I.

For the other cases, we can proceed analogous arguments to obtain the desired
results. We leave verifying them to readers. ⊓⊔
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5 (Im)possibility of Higher Fan-In Gates Garbling

In this section, we build upon our earlier work and investigate the existence of
secure garbling schemes for ℓ-input gates using s-sliced labels, where ℓ ≥ 3 and
s ≥ 3. Our previous research demonstrated that the construction presented in [1],
which aims to garble tri-gates gtri, leaks information about the permutation bits,
rendering the scheme insecure. This construction relied on employing three-sliced
labels to garble 3-input gates. The primary goal of this section is to address
the following open question: Is there a secure garbling scheme for ℓ-input gates
utilizing s-sliced labels, with ℓ ≥ 3 and s ≥ 3? Unfortunately, our response is
negative. Even considering s ≥ 3 and ℓ ≥ 3 seems unlikely to yield a secure
garbling scheme.

Let us begin with defining several notions. Throughout this section, we
consider garbling an ℓ-input gate g with input wires a1, . . . , aℓ and output wire b.

Notations.

– (Permute bits) The values αj ∈ {0, 1} for j ∈ {1, . . . , ℓ} are secret permute
bits that are only known by the garbler.

– (Input labels) Aαj ,j ∈ {0, 1}κ are wire labels corresponding to the false value
on the input wire aj for each j ∈ {1, . . . , ℓ}.

– (Output label) B ∈ {0, 1}κ represents the output wire label corresponding to
the false value on the output wire b.

– (Color bits) When Axj ,j are held by the evaluator, we assume that the
subscripts xj , referred to as color bits, are known by the evaluator.

– (Free-XOR) The value ∆ ∈ {0, 1}κ is a global offset secretly chosen by the
garbler. Then, A0,j+A1,j = ∆ for each j ∈ {1, . . . , ℓ}. Also, B+∆ represents
the output label corresponding to the true on the wire b.

– (Sliced labels) Given an integer s, we represent the wire labelW = W 1∥ · · · ∥W s

as W⃗ = (W 1, . . . ,W s), where each W i is κ/s-bits.

Using the previously mentioned notation, we now define several matrices and
vectors to establish a garbling equation.

– (Linear queries) We assume that queries to a random oracle are made on

functions of the input labels. For each j ∈ {1, . . . , ℓ}, only one of A⃗0,j or

A⃗1,j can be used as inputs to the random oracle. Particularly, we restrict
our concern to the setting where the only possible queries allowed to the
oracle are linear functions of the input labels. That is, we consider queries of
the following form: H

(∑
j∈I A⃗xj ,j

)
for a subset I ⊂ {1, . . . , ℓ}. We call such

queries as linear queries.
– (Function representation of queries) We continue to focus on the free-XOR

setting. Given an oracle response of the form H
(∑

j∈I A⃗xj ,j

)
, we represent

it as a function in F2κ/s [x1, . . . , xℓ]:

H
(∑

j∈I A⃗xj ,j

)
=

(
1 +

∑
j∈I xj

)
H

(∑
j∈I A⃗0,j

)
+
(∑

j∈I xj

)
H

(
A⃗1,i∗ +

∑
j∈I\{i∗} A⃗0,j

)
,
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where i∗ is the index such that xi∗ = 1. To understand why this representation
holds, note that if there are even number of j ∈ I such that xj = 1, then

we have H
(∑

j∈I A⃗xj ,j

)
= H

(∑
j∈I A⃗0,j

)
due to the free-XOR condition.

Similar arguments apply for the odd case.
– (Query matrix) Consider a vector H⃗ comprisingH

(∑
j∈I A⃗0,j

)
andH

(
A⃗1,i∗+∑

j∈I\{i∗} A⃗0,j

)
for all non-empty subset I ⊂ {1, . . . , ℓ}. Based upon the

aforementioned function representation of hI := H
(∑

j∈I A⃗xj ,j

)
, one can

represent a linear sum of the form
∑

I hI as a dot product M⃗⊤ · H⃗, where

M⃗ comprises polynomials 1 +
∑

j∈I xj and
∑

j∈I xj for certain I’s. In this

manner, for s linear sums of
∑

I hI ’s, one can express (h1, . . . , hs)
⊤ = MH⃗,

where the k-th row of M corresponds to the vector M⃗ associated with hj . We

refer to the matrix M as a query matrix and the vector H⃗ as a hash vector.
– (Control matrix) For each j ∈ {1, . . . , ℓ}, we introduce a j-th control matrix,

denoted by Rj , associated with the j-th input. The control matrix Rj

is a (s × s)-matrix with its entries in F2[α1, . . . , αℓ, x1, . . . , xℓ]. Since our
main interest lies in the case when αi ∈ F2, to streamline notation without
causing confusion, we treat its entries as elements in F2[x1, . . . , xℓ], and their
coefficients are parameterised by αi’s. As before, we also write

Rj = Rj,0 +Rj,1x1 + · · ·+Rj,ℓxℓ,

where each Rj,k is a binary matrix.

Remark 1. Assume that arbitrary non-linear functions of the input labels are
used to make queries to the random oracle. We observe that it reamins feasible
to provide a function representation of the responses to these oracle queries. For
instance, as we have seen from an example of Yao’s garbling scheme, a response
of the form H(Ax, By) can be represented as a quadratic function. Neverthe-
less, we confine our attention to the setting of linear queries, consistent with
prior studies [12,10,1]. Introducing non-linear queries may potentially increase
communication costs since we must account for additional monomials resulting
from higher-degree functions being considered. Notably, if our aim is to garble a
degree-2 gate, it is unnecessary to consider non-linear queries of degree exceeding
2. Nonetheless, exploring the potential benefits of such non-linear queries in
reducing communication cost when targeting higher-degree gates constitutes
an intriguing subject for future investigation. We reserve this issue for further
research. ⊓⊔

5.1 Garbling Equations

We are ready to formally define the notion of garbling equations. We will continue
to utilize the previously introduced notation throughout this discussion.

Definition 1 (Garbling Equation). For each i ∈ {1, . . . , s}, let hi be a linear
sum of linear queries. For j ∈ {1, . . . , ℓ}, let Rj be a j-th control matrix. The
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matrix M is the query matrix and the vector H⃗ is the hash vector associated with
(h1, . . . , hs) such that (h1, . . . , hs) = MH⃗. Given the vector (h1, . . . , hs) and the
control matrix Rj, we define a garbling equation G of a ℓ-input gate g by the
following equation:

Gg : V

[
C⃗

G⃗

]
= MH⃗ +

∑
1≤j≤ℓ

RjA⃗xj ,j + g(x1 + α1, . . . , xℓ + αℓ)∆⃗.

Here, V is a matrix comprised of column basis of the F2-subspace generated by
the columns of M and [C⃗, G⃗] is a (s+ r)-dimensional vector where s+ r is the
column length of V.

Definition 2. For an ℓ-input gate g, let Π = (Gb,En,Ev,De) be a garbling
scheme associated with a garbling equation Gg. If the garbling scheme Π is
correct, then we say that Π is correctly garbleable with respect to the garbling
equation Gg. Moreover, if Π satisfies privacy property, then we call that Π is
privately garbleable.

We observe that if there exists a vector [C⃗, G⃗] satisfying the garbling equation

Gg holds for any input labels A⃗xj ,j , a global offset ∆, and permute bits αj ∈ F2,
then the corresponding garbling scheme Π is correct.

In what follows, we will expand upon the discussions presented earlier to
encompass the garbling of arbitrary ℓ-input gates.

Definition 3. Assume that V is of the form V = [Is |W], where Is is the
s-dimensional identity matrix and W is a (s× r)-matrix over F2[x1, . . . , xℓ]. As
before, we write W = W1x1 + · · ·+Wℓxℓ for a (s × r)-binary matrix. Let us

consider a cokernel matrix P of the (ℓs× r)-matrix formed by
[
W⊤

1 | · · · |W⊤
ℓ

]⊤
.

Abusing the notation, we denote the matrix P by coker(W), i.e. coker(W) is a
binary matrix of the following form:

coker(W) := P = coker


W1

...
Wℓ


 .

Moreover, if the matrix
[
W⊤

1 | · · · |W⊤
ℓ

]⊤
is of rank r, then we can write

coker(W) = P = [P1 | · · · | Pℓ], where each Pj is a (ℓs − r) × s dimensional
matrix.

For a finite field F of characteristic 2, we consider the F-subspace spanned by
the columns in V and denote it by span(V):4

span(V) =

{
V

[
C⃗

G⃗

] ∣∣C⃗ ∈ Fs, G⃗ ∈ Fr

}
.

4 In the case that s-sliced labels used, we typically choose F = F2κ/s .
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Similar to the previous sections, let us write ν⃗ ∈ span(V) as ν⃗ = ν⃗0 + ν⃗1x1 +
· · ·+ ν⃗ℓxℓ for a F-vector ν⃗j . Then we can check that

ν⃗ ∈ span(V) if and only if P1ν⃗1 + · · ·+Pℓν⃗ℓ = 0.

Again, we define the relation πV by

πV(X1, . . . ,Xℓ) := P1X1 + · · ·+PℓXℓ,

where the dimension of each matrix Xj is properly defined.

5.2 Main Results

Next, we discuss on the conditions under which the garbling scheme Π is correct.

Lemma 1. Assume that span(M) = span(V) in the garbling equation Gg. If
ρ :=

∑
1≤j≤ℓ RjA⃗xj ,j + g(x1 + α1, . . . , xℓ + αℓ)∆⃗ ∈ span(V) for any A⃗xj ,j and

∆⃗, then the garbling scheme Π is correct.

Proof. It is obvious from the definition. Since span(M) = span(V), there exist

C⃗M and G⃗M such that MH⃗ = V
[
C⃗⊤

M | G⃗⊤
M

]⊤
. Similarly, as we have ρ ∈ span(V),

there exist C⃗ρ and G⃗ρ such that ρ = V
[
C⃗⊤

ρ | G⃗⊤
ρ

]⊤
. Therefore, we have C⃗ =

C⃗M + C⃗ρ and G⃗ = G⃗M + G⃗ρ. ⊓⊔

In the following, let us write the ℓ-variate gate g as a polynomial of the
following form:

g(x1 + α1, . . . , xℓ + αℓ) = g(0)(α1, . . . , αℓ) +
∑
d≥1

g
(d)
i1,...,id

(α1, . . . , αℓ)xi1 · · ·xid ,

(17)

where each g
(d)
i1,...,id

is the coefficient of xi1 · · ·xid in the expansion of g.

Lemma 2. Let the notations as above. Assume that H⃗ only consists of linear
queries. Then, we have ρ ∈ span(V) for any A⃗xj ,j and ∆⃗ if and only if (1) The
degree of g is less than or equal to 2 and (2) the following equations hold:

πV

(
Rj,1, . . . ,Rj,ℓ

)
= 0 for each j = 1, . . . , ℓ

πV

(
S1, . . . ,Sℓ

)
= 0 where Sj := Rj,0 +Rj,j + g

(1)
j Is

Rj,k +Rk,j + g
(2)
j,kIs = 0 for 1 ≤ j ⪇ k ≤ ℓ,

(18)

where Is is the s-dimensional identity matrix.

Proof. We follow a similar approach to the discussion presented in Equation (14)

and (15). Let us write A⃗xj ,j = A⃗0,j + xj∆⃗, for each j, and substitute them into
the expression of ρ in Lemma 1. As before, since we are working with the case
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where the variable xj takes the value in F2, we impose the condition that x2
j = xj .

Expanding the expression of ρ, we have the following:

ρ = R1A⃗0,1 + · · ·+RℓA⃗0,ℓ + ρ∆∆⃗,

where

ρ∆ =

ℓ∑
j=1

(
Rj,0+Rj,j

)
xj +

∑
1≤j ̸=k≤ℓ

(
Rj,k +Rk,j

)
xjxk + g(x1+α1, . . . , xℓ+αℓ).

Since ρ should belong to span(V) for any A⃗0,j and ∆⃗, it should satisfy that

RjA⃗0,j ∈ span(V), for each j, and ρ∆∆⃗ ∈ span(V).

The condition that RjA⃗0,j ∈ span(V) is equivalent to that

πV

(
Rj,1, . . . ,Rj,ℓ

)
= 0.

We notice that any elements in span(V ) contain only linear terms since we

assumed that H⃗ contains only linear queries. Thus, any terms of degree ≥ 2 in
ρ∆ should vanish. This condition is equivalent to that the polynomial g is of at
most degree 2 and the quadratic terms of ρ∆ are zeros, i.e.

Rj,k +Rk,j + g
(2)
j,kIs = 0 for 1 ≤ j ⪇ k ≤ ℓ.

Regarding the linear terms in ρ∆, it should satisfy the following:

πV

(
S1, . . . ,Sℓ

)
= 0,

where each Sj = Rj,0 +Rj,j + g
(1)
j Is is the coefficient of xj in ρ∆. Therefore, we

have proved our claims. ⊓⊔
The following theorem is a straightforward consequence of the preceding

lemmata. It provides guidance on selecting the control matrices to ensure the
correctness of a garbling scheme.

Theorem 2. Assume that the vector H⃗ consists of only linear queries and the
matrix M is of full rank in the garbling equation Gg. Then the garbling scheme
Π associated with the garbling equation Gg is correct, if and only if the followings
hold:

1. The degree of the target gate g is less than or equal to 2;
2. The control matrix Rj satisfies Equation (18) for each j.

Remark 2. From Theorem 2, we observe that if solely linear queries are permitted
to the random oracle, then it becomes unfeasible to garble a gate of degree greater
than or equal to 3 using the described method. Remarkably, this finding aligns
with Theorem 3 in [1], which demonstrates the inability to garble a 3-input AND
gate. However, our statement is more inclusive in the sense that it reveals the
impossibility of garbling any higher degree gates with any number of inputs.

Indeed, although Theorem 2 implies that garbling high-degree gates using
solely linear queries is infeasible, the prospect of constructing a garbling scheme
for such gates through non-linear queries remains open. Exploring this avenue
could yield fascinating results and warrants further investigation. ⊓⊔
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As demonstrated in the example of the construction by Ashur et al. [1] in
Section 4.2.2, choosing the control matrices in a manner that guarantees the
correctness of a garbling scheme does not invariably imply that the scheme is
also private. In other words, despite ensuring the correctness, the corresponding
control matrices may inadvertently reveal some information about the permute
bits. Consequently, we will explore the conditions under which information
regarding the permute bits is compromised.

Precisely, we provide the following lemma and theorem:

Lemma 3. For each j, suppose that there exists a non-zero vector v⃗j such that

v⃗⊤j Pj ̸= 0 and v⃗⊤j Pi = 0 for all i ̸= j.

Then, given
(
R1(i1, . . . , iℓ), . . . ,Rℓ(i1, . . . , iℓ)

)
for some i1, . . . , iℓ ∈ F2, one can

compute the value g̃j(α1, . . . , αℓ) for each j, where g̃j is a function that is defined
by the following:

g̃j := g
(1)
j +

∑
k⪇j

ikg
(2)
k,j +

∑
j⪇k

ikg
(2)
j,k .

Proof. First, we consider the case of j = 1. From the relations in Equation (13),
we have the following:

π(S1, . . . ,Sℓ) + (i1 + 1)π(R1,1, . . . ,Ri,ℓ) + i2π(R2,1, . . . ,R2,ℓ) + · · ·+ iℓπ(Rℓ,1, . . . ,Rℓ,ℓ)

= π
(
R1,0 + i1R2,1 + · · ·+ iℓRℓ,1 + g

(1)
1 Is, ∗ , . . . , ∗

)
= π

(
R̃1 + g̃1Is, ∗ , · · · , ∗

)
= 0,

where R̃k := Rk(i1, . . . , iℓ). In the second equality, we used the relation that

Rj,k = Rk,j + g
(2)
j,kIs from Equation (13).

Multiplying the vector v⃗⊤1 to the both sides yields

v⃗⊤1 P1R1(i1, . . . , iℓ) = g̃1v⃗
⊤
1 P1.

Thus, calculating the left-hand side, one can compute the value of g̃1. Similar
arguments hold for the other cases. ⊓⊔

The following theorem is an immediate consequence of the preceding lemma.
It specifies the conditions under which the garbling scheme leaks information
about the permute bits.

Theorem 3. For each j, suppose that there exists a non-zero vector v⃗j such that

v⃗⊤j Pj ̸= 0 and v⃗⊤j Pi = 0 for all i ̸= j.

Then the garbling scheme with the garbling equation Gg cannot be privately
garbleable.
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Proof. Recall that the evaluator is given
(
R1(i1, . . . , iℓ), . . . ,Rℓ(i1, . . . , iℓ)

)
for

some i1, . . . , iℓ ∈ F2 depending on her choices of the active input labels. By
Lemma 3, she can compute the value of g̃j(α1, . . . , αℓ) for each j = 1, . . . , ℓ. Thus,
the garbling scheme leaks some information on the permute bits α1, . . . , αℓ. It
violates the privacy property. ⊓⊔

5.3 Discussions

In this section, we discuss on several interesting implication of our results.

RR21 Construction. We observe that our proposed attack does not apply to the
construction by Rosulek and Roy [10], implying that it remains secure against
our presented attack. Recall that in their construction the matrix W is of the
form W = W1x+W2y, where:

W1 =

[
1 0 1
0 0 1

]
and W2 =

[
0 0 1
0 1 1

]
.

Hence, the cokernel of W is coker(W) = P = [P1 | P2] = [0 1 | 1 0]. Since the
matrix Pk consists of only one row, its left kernel is trivial. In other words, there
exists no non-zero vector v⃗ such that v⃗⊤Pk = 0, which precludes our proposed
attack.

Indeed, as observed in the explicit formula presented in Section 3, the values
RA(i, j) and RB(i, j) do not reveal any information on the permute bits α
and β. Due to the enough degrees of freedom available in the choice of the
control matrices, the permute bits are effectively masked by these random values,
hindering the evaluator from deducing the permute bits.

When Our Attack Works. Recalling that the matrix Pi depends directly on
the matrix V = [I |W], we will now present a simple criterion for determining
whether our attack can be applied simply by observing the matrix W. Recall
that W = W1x1 + · · ·+Wℓxℓ, where each Wj is a (s× r)-binary matrix. We
assume that s ≤ r; we will address later why this assumption seems to hold
whenever the matrix V includes the identity matrix I.

In what follows, we argue that if the Wj is not of a full rank for some
j, then our attack is applicable. Without loss of generality, assume that the
rank of W1 is less than s. By this assumption, the rows of W1 are linearly
dependent. Therefore, there exists a non-zero vector p⃗1 such that p⃗⊤1 W1 = 0.

Since
[
p⃗⊤1 | 0 | · · · | 0

]
is an element of the cokernel of

[
W⊤

1 | · · · |W⊤
ℓ

]⊤
and the

matrix P is a basis matrix of the cokernel, there exists a non-zero vector v⃗1 such
that v⃗1P = [v⃗1P1 | · · · | v⃗1Pℓ] =

[
p⃗⊤1 | 0 | · · · | 0

]
. Thus, the vector v⃗1 satisfies

the condition in Theorem 3.
For instance, as discussed in Section 4, in the construction by Ashur et al. [1],

the (3× 4)-matrix Wj has rank 2. Hence, their construction is vulnerable to our
attack.
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Necessary Conditions to Succeed Our Attack. Unfortunately, the condition in
Theorem 3 is not a necessary condition for our attack to succeed. We will now
examine the following intriguing case study. Let us consider a three-sliced garbling
scheme, as described in the construction presented by Ashur et al., i.e. we set
s = 3. We maintain the same notation used in Section 4.2.2. In our example, let
us take into account the following linear combinations of linear queries:

D1 + gtri(u, v, w)∆
1 = H(By + Cz) +H(Ax +By + Cz) + · · ·

D2 + gtri(u, v, w)∆
2 = H(Ax + Cz) +H(Ax +By + Cz) + · · ·

D3 + gtri(u, v, w)∆
3 = H(Ax +By) +H(Ax +By + Cz) + · · · .

In this case, we have the matrix V = [I |W] where

W =

y + z 0 0 x+ y + z
0 x+ z 0 x+ y + z
0 0 x+ y x+ y + z

 = W1x+W2y +W3z.

One might check that each matrix Wj has full rank. Moreover, we could not find
a vector v⃗j satisfying the condition in Theorem 3. However, if we find the control
matrices fullfilling Equation (18), we observe that the corresponding garbling
scheme still leaks some information on the permute bits. Precisely, when the
evaluator is given the control matrices at (x, y, z) = (0, 0, 0), i.e. the active input
labels are A0, B0, C0, the evaluator can deduce the value of β + γ by comparing
the values R1,0 = RA(0, 0, 0) and R2,0 = RB(0, 0, 0).

Consequently, it has been observed that the rank condition on Wj is insuffi-
cient to construct a secure garbling scheme. It remains as an open problem to
explore further when a secure garbling scheme can be constructed.
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A How to Randomize the Control Bits

In this section, we explain how the dicing technique works. It turns out that any
garbling construction from our algebraic perspective can be used to randomize
the control bits as well. We note that the technique in [10] can be seen as a
particular case of ours.

For the sake of readability, we mainly describe the technique with the example
of RR21’s construction, then we explain how this works in general case.
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At the beginning of the dicing technique, the garbler chooses (RA,RB) at
random among 214 possible choices. Assume that the choice is

R = [RA|RB ] =

[
0 0 x+ α y + β + 1
0 0 y x

]
.

It is chosen by setting all the free variables zero except e3 = 1.
To send the information on R, the garbler encrypts it column by column.

More precisely, say R = [−→r1 , . . . ,−→r4 ], where −→rk is the k-th column of R. The
algorithm Gb makes random oracle queries and define

−→
S con :=

(
Hc(A0), Hc(A1), Hc(B0), Hc(B1), Hc(A0 +B0), Hc(A0 +B1)

)⊤
,

where Hc is a random oracle that returns an 1-bit string (it is usually chosen as
the least significant bit of outputs by the random oracle).

Given the column −→rk for each k, choose −→zk := (zk1, . . . , zk5)
⊤ such that

V−→zk = M
−→
S con +−→rk . (19)

Then it returns the vector −→zk which comprises the ciphertexts encrypting −→rk .
For instance, let us take an example of −→r3 = (x+ α, y)⊤. By comparing both

sides, we have
z31 = Hc(A0) +Hc(A0 +B0) + α
z32 = Hc(B0) +Hc(A0 +B0)
z33 = Hc(A0) +Hc(A1) + 1
z34 = Hc(B0) +Hc(B1) + 1
z35 = Hc(A0 +B0) +Hc(A0 +B1).

Let Vij be the value of V evaluated at (x, y) = (i, j). Upon receiving −→zk , on
input Ai and Bj , the algorithm Ev computes

−→
r̃k = Vij

−→zk +

[
1 0 1
0 1 1

] H(Ai)
H(Bj)

H(Ai +Bj)

 .

It is easily verified that
−→
r̃k is the value of −→rk evaluated at (x, y) = (i, j), i.e. the

marginal view.
We observe that the above argument works in general not only for RR21’s

construction. Actually, the control bit randomization is carried out by encrypting
each columns of R, the randomly chosen control bits. Moreover, it is encrypted
via the same garbling equation as that used for the original garbling construction.
In other words, the matrices M and V in Equation (19) are the same as the
original garbling equation. The only condition for the control bits encryption
to work, it suffices to see whether −→rk belongs to the same space spanned by
the columns of M or V. And it turns out to be equivalent that −→rk satisfies the
relation πV in Section 3. Recall that −→rk is the column of R. We observe that
R, thus each of its columns, satisfies the relation πV which is the desired result.
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Henceforth, we argue that the control bit randomization is always possible with
its original garbling equation.

To help readers’ understanding, let us call back the previous example of the
RR21 construction. In this case, the relation π is equivalent to say that the
y-coefficient on the top is the same as the x-coefficient of the bottom. We see
that, for each −→rk , it satisfies the condition.

Let us consider why this technique does not reveal the information on α
and β. We see that the entire value of R will definitely disclose the permute
bits. Observe that −→zk ’s are encrypting the coefficients of the polynomials in R

using
−→
S con. And the decryption only reveals the value of the polynomials in R

evaluated at (x, y) = (i, j). Without knowing the wire labels other than Ai and
Bj , the evaluator cannot evaluate the polynomials outside of (i, j). Thus, it does
not disclose the entire information on R.

Remark 3. One might observe that our example of RR21 is slightly different
from their original description. Their description is intrinsically reducing the
number of ciphertexts −→z k’s encrypting the control bits by choosing the control
bits R from a small subspace rather than the full space of dimension 14. By a
tedious computation, we see that R in [10, Figure 3.] is actually determined by
only the first column. Setting −→r 1 := (r11, r12)

⊤ = (ax+ by + c, bx+ dy + e)⊤ for
randomly chosen a, b, c, d, e ∈ F2, we check that the matrix R is the same as

R =

[
r11 r12 r12 + (x+ 1) r11 + r12
r12 r11 + r12 + (y + 1) r11 + r12 r11

]
.

Thus, it is enough to send only the encryption of −→r 1, instead of sending entire
encryptions of all columns. Therefore, it reduces the number of ciphertexts
garbling the control bits.

B How to Choose Control Matrices

Given the matrix V as defined in Equation (12), for any vector ν⃗ = ν⃗0 + ν⃗1x+
ν⃗2y+ ν⃗3z ∈ span(V), we obtain πV(ν⃗1, ν⃗2, ν⃗3) = P1ν⃗1 +P2ν⃗2 +P3ν⃗3 = 0, where

P = [P1 | P2 | P3] =


1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0

 . (20)

By computing the control matrices satisfying Equation (14) and (15), we can
provide their explicit formula as follows.
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