
Efficient Implementations of Square-root Vélu’s Formulas
Jianming Lina, Weize Wangb, Chang-An Zhaoa,c,∗ and Yuhao Zhenga

aSchool of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P.R.China
bSchool of Computer Science, Fudan University, Shanghai, 200438, P.R.China
cGuangdong Key Laboratory of Information Security, Guangzhou, Guangdong, 510006, P. R. China

A R T I C L E I N F O

Keywords:
isogeny-based cryptography√

élu formulae
partition
algorithm

A B S T R A C T

In the implementation of isogeny-based cryptographic schemes, Vélu’s formulas are essential
for constructing and evaluating odd degree isogenies. Bernstein et al. proposed an approach
known as

√
élu, which computes an 𝓁-isogeny at a cost of ̃(√𝓁) finite field operations. This

paper presents two key improvements to enhance the efficiency of the implementation of
√

élu
from two aspects: optimizing the partition involved in

√
élu and speeding up the computations

of the sums of products used in polynomial multiplications over finite field 𝔽𝑝 with large prime
characteristic 𝑝. To optimize the partition, we adjust it to enhance the utilization of 𝑥-coordinates
and eliminate the computational redundancy, which can ultimately reduce the number of 𝔽𝑝-
multiplications. The speedup of the sums of products is to employ two techniques: lazy reduction
(abbreviated as LZYR) and generalized interleaved Montgomery multiplication (abbreviated as
INTL). These techniques aim to minimize the underlying operations such as 𝔽𝑝-reductions and
assembly memory instructions. We present an optimized C and assembly code implementation
of

√
élu for the CTIDH512 instantiation. In terms of 𝓁-isogeny computations in CTIDH512, the

performance of clock cycles applying new partition + INTL (resp. new partition + LZYR) offers
an improvement up to 16.05% (resp. 10.96%) compared to the previous work.

1. Introduction
Isogeny-based post-quantum scheme was first proposed in 2006 by Couveignes, Rostovtsev and Stolbunov in [1, 2]

(CRS scheme). The security of this system is based on the difficulty of computing isogenies between ordinary curves
defined over a finite field. Since then, isogeny-based cryptography has gained increasing attention from cryptographers.

The CRS scheme faces bottlenecks in terms of efficiency and security. Childs et al. showed that the private key of
CRS could be recovered in subexponential time on a quantum computer [3]. In 2011, the Supersingular Isogeny-based
Diffie-Hellman key exchange protocol (SIDH) was presented by Jao and De Feo in [4]. This protocol is more efficient
than CRS. In 2014, a supersingular isogeny key encapsulation scheme (SIKE) based on SIDH was proposed [5]. SIKE
was submitted to the NIST post-quantum cryptography standardization project (https://www.nist.gov/) in 2017,
and passed to the round 4 of this contest as an alternative candidate in 2021.

However, more recently Castryck and Decru presented an efficient key recovery attack on SIDH [6]. Maino et al. [7]
provided a subexponential algorithm to break SIDH with arbitrary starting curves. Inspired by these works, Robert [8]
presented a deterministic polynomial time attack on SIDH in all cases. All of these attacks can also be applied to
Séta [9] and B-SIDH [10].

Fortunately the above attacks do not extend to CSIDH, a commutative class group action protocol proposed by
Castryck et al. in 2018 [11]. CSIDH is another isogeny-based key exchange protocol based on the CRS scheme,
operating with supersingular curves. Compared with CRS and its variant presented by Kieffer et al. in [12], CSIDH
is significantly faster. Banegas et al. presented a constant-time implementation of CSIDH named CTIDH [13] in
2021, which is the most efficient constant-time variant of CSIDH. Nevertheless, CSIDH/CTIDH also suffers from
a subexponential-time attack on quantum computers since the endomorphism ring over 𝔽𝑝 is commutative. Therefore,
several works suggest that CSIDH should work with larger parameters to reach the NIST security level [14, 15, 16].
This means that CSIDH needs to involve the constructions and evaluations of larger degree isogenies, which are the
most expensive computational tasks.

∗Corresponding author
linjm28@mail2.sysu.edu.cn (J. Lin); wzwang23@m.fudan.edu.cn (W. Wang); zhaochan3@mail.sysu.edu.cn (C. Zhao);

zhengyh57@mail2.sysu.edu.cn (Y. Zheng)
ORCID(s): 0009-0007-9144-1432 (J. Lin)

First Author et al.: Preprint submitted to Elsevier Page 1 of 13

https://www.nist.gov/

Efficient Implementations of Square-root Vélu’s Formulas

These key exchange protocols can be used to construct digital signatures. Until now the two kinds of signatures:
CSIDH-based [17, 18, 19, 20] and quaternion-based [21, 22, 23, 24] are not vulnerable to the Castryck-Decru-Maino-
Martindale-Robert attacks [6, 7, 8] since they do not reveal the torsion point information. Both of them involve the
constructions and evaluations of large degree isogenies. Additionally, an isogeny-based public key encryption (PKE)
named FESTA [25] was proposed by Basso et al. in 2023, whose encryption process also requires large degree isogeny
computations. Based on the above, the computations of large degree isogeny are the fundamental operations in the
majority of isogeny-based schemes.

Denote an isogeny of odd degree 𝓁 by 𝓁-isogeny. Vélu’s formulas [26] have been widely used to construct and
evaluate 𝓁-isogenies. In recent years, there are several works focusing on optimizing the constructions and evaluations
of 𝓁-isogenies via Vélu’s formulas [27, 28, 29, 30, 31]. They use the other coordinates besides Montgomery models
such as Edwards coordinates to speed up the finite field arithmetic, or apply the technique of addition chains to optimize
the computations of scalar multiplications involved in isogeny computations. These optimizations obtain a cost of ̃(𝓁)
field operations.

Bernstein et al. presented a new technique to construct and evaluate 𝓁-isogenies at a cost of about ̃(√𝓁) field
operations in 2020 [13]. This approach was achieved by observing that the evaluations of polynomial products can be
efficiently done via the baby-step giant-step algorithm. Due to its square root complexity, this variant of Vélu’s formulas
is named as square-root Vélu’s formulas, or simply

√
élu. The experimental tuning results in [32] demonstrate that

√
élu

performs better for 𝓁 ≥ 83. Adj et al. presented a more concrete computational analysis of
√

élu and employed novel
techniques to reduce the polynomial multiplications [33] when performing the evaluations of 𝓁-isogenies.

Consequently, several works have focused on developing more efficient square-root Vélu’s formulas of 𝓁-isogenies
on other supersingular elliptic curve models beyond Montgomery curves. In 2019, Moriya et al. performed CSIDH on
Edwards curves [34], utilizing the 𝑤-coordinate for 𝓁-isogeny constructions and evaluations. Following the proposal
of

√
élu, they applied it to their new approach and implementation and achieved further optimization [35]. More recent

works include constructions and evaluations of 𝓁-isogenies on Huff curves [36], Twisted Jacobi quartic curves [37] [38]
and Twisted Hessian curves [39].

Our Contributions. We speed up the implementation of
√

élu from two perspectives: optimizing the partition
required in

√
élu to reduce the number of multiplications over finite fields and saving the underlying finite field

arithmetic involved in the polynomial multiplications. Let 𝔽𝑝 be a finite field with 𝑝 elements in the rest of this paper,
where 𝑝 is an odd prime.

For the previous partition 𝑆 = (𝐼±𝐽)∪𝐾 [32] required in the process of
√

élu, the set 𝐼 is completely not included
in 𝑆 which may bring some computational redundancy. Inspired by this, we modify the above partition and rewrite 𝑆
by 𝑆̃ to make the new set 𝐼 included in 𝑆̃. This adjustment can enhance the utilization of the set of 𝑥-coordinates and
share more computations of scalar multiplications, which can reduce the number of 𝔽𝑝-multiplications.

Inspired by Bernstein 𝑒𝑡 𝑎𝑙.’s suggestion in Appendix A.5 of [32], we consider lazy reduction [40] and generalized
Montgomery multiplication [41] to speed up

√
élu by reducing the 𝔽𝑝-modular reductions and the underlying memory

instructions respectively in concrete implementation.
Based on the code of [13] (https://ctidh.isogeny.org/) and [41], we implement

√
élu on CTIDH512

instantiation using our improvements. More precisely, our main contributions are summarized as follows:

1. Our new partition saves the 𝔽𝑝-multiplications by up to 5.64% compared with the previous implementation of
CTIDH512 when computing large 𝓁-isogenies. Moreover, it can effectively expand the utilization of

√
élu in

isogeny-based cryptosystems.
2. We combine the new partition with lazy reduction to speed up the computation of large 𝓁-isogenies over 𝔽𝑝. The

experimental results of clock cycles (resp. multiplication instructions) for computing large 𝓁-isogenies indicate
a reduction of up to 10.96% (resp. 15.75%) compared to the previous work [13, 32].

3. We compute the sums of products used in polynomial multiplications over 𝔽𝑝 by applying generalized
interleaved multiplication and combine it with our new partition. This approach leads to a speedup in 𝓁-isogeny
computations, reducing the number of memory instructions by up to about 24.25% (𝓁 = 347). The performing
results for computing large degree 𝓁-isogenies show a clock cycle saving of up to 16.05% (𝓁 = 137) compared
to the previous work [13, 32].

Our code is included in the supplementary material.

First Author et al.: Preprint submitted to Elsevier Page 2 of 13

https://ctidh.isogeny.org/

Efficient Implementations of Square-root Vélu’s Formulas

Outline. The remainder of this paper is organized as follows. In Section 2, we give a brief overview of traditional
Vélu’s formulas and

√
élu. We also provide an introduction of Montgomery multiplication and lazy reduction. Section

3 presents the approaches to speed up the computation of large degree 𝓁-isogenies. In Section 4, we compare the
experimental results of the cost of computing 𝓁-isogenies on CTIDH512 utilizing our methods with the previous
work. Finally, our conclusion and future work are drawn in Section 5.

Notations. Denote the 𝔽𝑝-multiplications and 𝔽𝑝-squares by M and S, respectively.

2. Preliminaries
In this section, we introduce the corresponding mathematical preliminaries used in our methods, including isogeny

formulas, Montgomery multiplications, and lazy reduction.

2.1. Vélu’s Formulas
Let 𝐸 and 𝐸′ be two elliptic curves defined over 𝔽𝑝. An isogeny 𝜑 ∶ 𝐸 → 𝐸′ defined over 𝔽𝑝 can be regarded as

a non-constant group homomorphism from 𝐸(𝔽𝑝) to 𝐸′(𝔽𝑝) such that 𝜑(𝐸) = 𝐸′ , where 𝐸 (resp. 𝐸′) denotes
the point at infinity on 𝐸 (resp. 𝐸′). The degree of 𝜑 is its degree as a group homomorphism, denoted by deg(𝜑). The
kernel of 𝜑 is a finite subgroup 𝐺 ⊂ 𝐸(𝔽𝑝) such that 𝜑(𝐺) = {𝐸}, and we name it ker(𝜑). For separable isogenies,
the equality deg(𝜑) = # ker(𝜑) always holds [4]. Concrete formulas of 𝜑 were first given by Vélu [26, 42].

A Montgomery curve [43] is an elliptic curve defined through the following equation:

𝐸𝐴∕𝔽𝑝 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥,

where 𝐴 ∈ 𝔽𝑝 ⧵ {±2}. The Montgomery model is preferred in isogeny-based cryptosystems due to its efficient
arithmetic.

Vélu’s Formulas on Montgomery curves. Costello and Hisil proposed the odd-degree isogenies (Vélu’s)
formulas on Montgomery curves using 𝑥-coordinates [27]. The computations include the evaluations of the image
point 𝑄′ = 𝜑(𝑄) and the codomain curve coefficient 𝐴′.

Theorem 1. For a finite field 𝔽𝑝, let 𝓁 and 𝑠 be two integers satisfying 𝓁 = 2𝑠+ 1, where 𝓁 is odd. Let 𝑃 ∈ 𝐸𝐴(𝔽𝑝) be
a point of order 𝓁 on the Montgomery curve 𝐸𝐴∕𝔽𝑝 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥, and write 𝜎 =

∑𝑠
𝑖=1 𝑥[𝑖]𝑃 , 𝜎̃ =

∑𝑠
𝑖=1

1
𝑥[𝑖]𝑃

and 𝜋 =
∏𝑠

𝑖=1 𝑥[𝑖]𝑃 . The curve
𝐸𝐴′∕𝔽𝑝 ∶ 𝑦2 = 𝑥3 + 𝐴′𝑥2 + 𝑥

with
𝐴′ = 𝜋2 ⋅ (6𝜎̃ − 6𝜎 + 𝐴)

is the codomain of 𝓁-isogeny 𝜑 ∶ 𝐸𝐴 → 𝐸𝐴′ with 𝐾𝑒𝑟(𝜑) = ⟨𝑃 ⟩, which is defined by the rational map:

𝜑 ∶ 𝑥 ↦ 𝑓 (𝑥),

where

𝑓 (𝑥) = 𝑥 ⋅
𝑠∏

𝑖=1

(𝑥𝑥[𝑖]𝑃 − 1
𝑥 − 𝑥[𝑖]𝑃

)2

. (1)

The Costello-Hisil algorithm [27] is the state-of-the-art for evaluating relatively small odd degree isogenies on
Montgomery models. However, for larger degree 𝓁-isogenies, there exists a more effective algorithm. We will describe
it in the next subsection.

First Author et al.: Preprint submitted to Elsevier Page 3 of 13

Efficient Implementations of Square-root Vélu’s Formulas

2.2.
√

élu’s Formulas
Bernstein et al. first proposed a baby-step giant-step like method which is named

√
élu for computing large degree

isogenies [32]. In the following, we state the computation process of
√

élu in detail.
From Theorem 1, the 𝑥-coordinate of 𝜑(𝑄) can be represented as

𝑥𝜑(𝑄) = 𝑥𝓁 ⋅
𝑠∏

𝑖=1

(𝑥[𝑖]𝑃 − 1∕𝑥
𝑥 − 𝑥[𝑖]𝑃

)2

.

Let ℎ𝑆 (𝑥) =
∏

𝑖∈𝑆 (𝑥 − 𝑥[𝑖]𝑃). Then 𝑥𝜑(𝑄) can be expressed as a function of ℎ𝑆 (𝑥) ∶

𝑥𝜑(𝑄) = 𝑥𝓁 ⋅
∏
𝑖∈𝑆

(
ℎ𝑆 (1∕𝑥)
ℎ𝑆 (𝑥)

)2

where 𝑆 = {1, 3,⋯ ,𝓁 − 2}.

The formulas from Theorem 1 give an approach to computing the codomain coefficient 𝐴′. Another approach is
pointed out in [29]. One can transform it to twisted Edwards form and use the formulas in [44] to obtain 𝐴′ = 2 ⋅ 1+𝑑

1−𝑑
where

𝑑 =
(𝐴 − 2
𝐴 + 2

)𝓁 (ℎ𝑆 (1)
ℎ𝑆 (−1)

)8
.

Note that both evaluating isogenies and computing codomain curves require the evaluation of ℎ𝑆 (𝑥). A straightforward
approach is to perform ̃(#𝑆) 𝔽𝑝-operations by enumerating the points in 𝑆. Alternatively, Bernstein et al. proposed
a strategy to efficiently evaluate ℎ𝑆 (𝑥) and obtained a square root complexity speedup over the Costello-Hisil
algorithm [27]. For our purpose, we present the following lemma in [45] to illustrate the relationship between
𝑥𝑃 , 𝑥𝑄, 𝑥𝑃+𝑄 and 𝑥𝑃−𝑄.

Lemma 1. Let 𝐸∕𝔽𝑝 be an elliptic curve. There exist biquadratic polynomials 𝐹0, 𝐹1 and 𝐹2 in 𝔽𝑝[𝑥1, 𝑥2] such that

(𝑥 − 𝑥𝑃+𝑄)(𝑥 − 𝑥𝑃−𝑄) = 𝑥2 +
𝐹1(𝑥𝑃 , 𝑥𝑄)
𝐹0(𝑥𝑃 , 𝑥𝑄)

𝑥 +
𝐹2(𝑥𝑃 , 𝑥𝑄)
𝐹0(𝑥𝑃 , 𝑥𝑄)

for all 𝑃 and 𝑄 in 𝐸 such that 𝐸 ∉ {𝑃 ,𝑄, 𝑃 +𝑄,𝑃 −𝑄}.

Consider the set 𝑆 = {1, 3,⋯ ,𝓁 − 2}. Let 𝐼 = {2𝑏 + 4𝑏𝑖 | 0 ≤ 𝑖 < 𝑏′} and 𝐽 = {2𝑗 + 1 | 0 ≤ 𝑗 < 𝑏}
where 𝑏 = ⌊√𝓁−1

2 ⌋, 𝑏′ = ⌊𝓁−14𝑏 ⌋ if 𝑏 > 0, and 𝑏′ = 0 if 𝑏 = 0. Then we have 𝑆 = (𝐼 ± 𝐽) ∪ 𝐾 such that
ℎ𝑆 (𝑥) = ℎ(𝐼±𝐽)∪𝐾 (𝑥) where the set 𝐾 = {4𝑏𝑏′ + 1,⋯ ,𝓁 − 4,𝓁 − 2}. We can represent most elements of 𝑆 through
(𝐼 + 𝐽) ∪ (𝐼 − 𝐽) = 𝐼 ± 𝐽 and make sure 𝐼 + 𝐽 , 𝐼 − 𝐽 are disjoint. Consequently, we need to determine the sets
of 𝑥-coordinates: 𝑥𝐼 = {𝑥([𝑖]𝑃) | 𝑖 ∈ 𝐼}, 𝑥𝐽 = {𝑥([𝑗]𝑃) | 𝑗 ∈ 𝐽} and 𝑥𝐾 = {𝑥([𝑘]𝑃) | 𝑘 ∈ 𝐾} using the
partition mentioned above while evaluating ℎ𝑆 (𝑥). Finally, we apply Lemma 1 to express ℎ𝐼±𝐽 (𝑥) as a resultant of two
polynomials of smaller size:

ℎ𝐼±𝐽 (𝑥) =
∏

(𝑖,𝑗)∈𝐼×𝐽
(𝑥 − 𝑥[𝑖+𝑗]𝑃)(𝑥 − 𝑥[𝑖−𝑗]𝑃)

=
𝑅𝑒𝑠𝑧(ℎ𝐼 (𝑧), 𝐸𝐽 (𝑥, 𝑧))
𝑅𝑒𝑠𝑧(ℎ𝐼 (𝑧), 𝐷𝐽 (𝑧))

where
𝐸𝐽 (𝑥, 𝑧) =

∏
𝑗∈𝐽

(𝐹0(𝑧, 𝑥[𝑗]𝑃)𝑥2 + 𝐹1(𝑧, 𝑥[𝑗]𝑃)𝑥 + 𝐹2(𝑧, 𝑥[𝑗]𝑃))

and 𝐷𝐽 (𝑧) =
∏

𝑗∈𝐽 𝐹0(𝑧, 𝑥[𝑗]𝑃).
By using the above techniques, the computational cost of performing an 𝓁-isogeny has been reduced from ̃(𝓁) to

̃(√𝓁). Specifically, Adj et al. [33] showed that the best algorithm for the polynomial multiplications inherent in
√

élu
is to apply Karatsuba’s method, then the complexity becomes approximately ̃(𝑘(√𝓁)log2 3) where 𝑘 is a constant. Due
to the constant 𝑘,

√
élu’s formulas perform better only when the prime degree 𝓁 is large.

First Author et al.: Preprint submitted to Elsevier Page 4 of 13

Efficient Implementations of Square-root Vélu’s Formulas

2.3. Montgomery multiplication and lazy reduction
A widely-used method known as Montgomery multiplication was proposed by Montgomery in [46]. This method

speeds up the modular multiplication by replacing long divisions by simple divisions with powers of 2.
To apply the Montgomery multiplication, all of 𝔽𝑝-elements are represented in the Montgomery domain [46]. Let

𝑅 = 2𝑁 , and 𝑝′ = −𝑝−1 mod 𝑅, where 𝑁 = 𝑛𝑤, 𝑛 = ⌈ 𝑙
𝑤⌉, 𝑙 = ⌈log2 𝑝⌉, the value 𝑤 is the computer wordsize. Since

we implement the modular multiplication on the x64 platform, we set 𝑤 = 64. For two 𝔽𝑝-elements 𝑎 and 𝑏, their
Montgomery representations are given by 𝑎̃ = 𝑎𝑅 mod 𝑝 and 𝑏̃ = 𝑏𝑅 mod 𝑝, respectively. If it holds that 𝑎̃𝑏̃ < 𝑝𝑅,
the 𝑝-residue 𝑐 = 𝑎̃𝑏̃𝑅−1 mod 𝑝 can be computed as

𝑐 = (𝑎̃𝑏̃ + ((𝑎̃𝑏̃ mod 𝑅)𝑝′ mod 𝑅)𝑝)∕𝑅. (2)

Since it satisfies: 0 ≤ 𝑐 < 𝑝𝑅+𝑝𝑅
𝑅 = 2𝑝, we need to execute a modular correction to ensure that 𝑐 lies within the range

[0, 𝑝 − 1]. Finally the result 𝑎𝑏 mod 𝑝 can be easily computed by dividing 𝑐 by the value 𝑅.
Let {𝑎0, 𝑎1,⋯ , 𝑎𝑡−1} and {𝑏0, 𝑏1,⋯ , 𝑏𝑡−1} be two sets of elements in 𝔽𝑝. The computations of the sums of

products: [41] 𝑐 =
∑𝑡−1

𝑖=0 ±𝑎𝑖𝑏𝑖 mod 𝑝 can be found at the core of many cryptologic computations, such as pairing and
isogeny computations.

In practice, the technique of lazy reduction is widely used to optimize the implementation of computing the sums
of products 𝑐. Instead of performing each modular multiplication 𝑎𝑖𝑏𝑖 mod 𝑝 separately, we first compute the sum of
unreduced integer products

∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖, and finally perform the modular reduction 𝑐 =

∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 mod 𝑝. This approach

can significantly reduce the number of 𝔽𝑝-modular reductions.

3. Main results
In this section, we present our main optimizations to the implementation of

√
élu. Using the same notation as above,

let 𝑃 be a point of order 𝓁. We modify the partition of sets 𝐼, 𝐽 , 𝐾 which can reduce the number of 𝔽𝑝-multiplications
in the computations of 𝑥𝐼, 𝑥𝐽 and 𝑥𝐾 . Moreover, since it needs to perform polynomial multiplications when dealing
with ℎ𝐼 (𝑧), 𝐸𝐽 (𝑥, 𝑧) and their resultant 𝑅𝑒𝑠𝑧(ℎ𝐼 (𝑧), 𝐸𝐽 (𝑥, 𝑧)) [32], we accelerate the computations of the sums of
products over 𝔽𝑝 which are widely used in polynomial multiplications by applying lazy reduction and generalized
interleaved Montgomery multiplication [41].

3.1. Modifying the partition
From Section 2.2, the computation of 𝑥𝐼 = {𝑥([𝑖]𝑃) | 𝑖 ∈ 𝐼}, 𝑥𝐽 = {𝑥([𝑗]𝑃) | 𝑗 ∈ 𝐽} and 𝑥𝐾 = {𝑥([𝑘]𝑃) | 𝑘 ∈

𝐾} is a crucial part of the evaluation of ℎ𝑆 (𝑥) on
√

élu. In the previous partition [32], the set 𝐼 is not included in 𝑆
which may lead to some additional computations of scalar multiplications. Inspired by this, we redefine the set 𝑆 as
𝑆̃ = {2, 4,⋯ ,𝓁−1} to make all the elements in 𝑆̃ be even. By the properties of 𝑥-coordinates on Montgomery curves
we have ℎ𝑆 (𝑥) = ℎ𝑆̃ (𝑥). We modify the partition of 𝐼, 𝐽 , 𝐾 as follows:

𝐼 = {2𝑏̃ + 2 + 𝑖(4𝑏̃ + 2)| 𝑖 = 0, 1,⋯ , 𝑏̃′ − 1}
𝐽 = {2𝑗 + 2| 𝑗 = 0, 1,⋯ , 𝑏̃ − 1}
𝐾̃ = {4𝑏̃𝑏̃′ + 2𝑏̃′ + 2, 4𝑏̃𝑏̃′ + 2𝑏̃′ + 4,⋯ ,𝓁 − 1}

where 𝑏̃ = ⌊√𝓁−1
2 ⌋ and 𝑏̃′ = ⌊ 𝓁−1

4𝑏̃+2⌋ are the sizes of the sets 𝐽 and 𝐼 , respectively. It can be verified that the set
𝐼 ± 𝐽 = (𝐼 + 𝐽) ∪ (𝐼 − 𝐽) is a disjoint union as before. Let 𝑖0 be an arbitrary element in 𝐼 , we have:

2 ≤ 2𝑏̃ + 2 ≤ 𝑖0 ≤ 4𝑏̃𝑏̃′ + 2𝑏̃′ − 2𝑏̃ < 𝓁 − 1

Due to the arbitrariness of 𝑖0, 𝐼 is completely contained in 𝑆̃. Consequently, 𝑆̃ can be expressed as: 𝑆̃ = (𝐼±𝐽)∪𝐼∪𝐾̃ .
The evaluation formula of ℎ𝑆̃ (𝑥) can be represented as:

ℎ𝑆̃ (𝑥) = ℎ𝐼 (𝑥)ℎ𝐾̃ (𝑥) ⋅ 𝑅𝑒𝑠𝑧(ℎ𝐼 (𝑧), 𝐸𝐽 (𝑧, 𝑥𝑗)).

After the above adjustment, the set 𝐼 plays the same role as 𝐾̃ which can improve the utilization of the 𝑥-coordinates
during the evaluation of ℎ𝑆̃ (𝑥). In the following, we state how this modification impacts the computational cost.

First Author et al.: Preprint submitted to Elsevier Page 5 of 13

Efficient Implementations of Square-root Vélu’s Formulas

In practice, we do not fix 𝑏 = ⌊√𝓁−1
2 ⌋ (resp. 𝑏̃ = ⌊√𝓁−1

2 ⌋) and 𝑏′ = ⌊𝓁−14𝑏 ⌋ (resp. 𝑏̃′ = ⌊ 𝓁−1
4𝑏̃+2⌋) since the

corresponding partition may not be optimal. We use a tuning program mentioned in [32] to identify the unique
(𝑏, 𝑏′) (resp. (𝑏̃, 𝑏̃′)) which achieves the highest efficiency by looping through the values 𝑏 and 𝑏′ (resp. 𝑏̃ and
𝑏̃′), calculating and comparing the computational cost (𝔽𝑝-multiplication) of performing an 𝓁-isogeny using the
corresponding partition. The following theorem highlights that if the tuning results of the previous partition verify
a specific condition, we can always save several 𝔽𝑝-multiplications.

Theorem 2. Let 𝑆̃ = (𝐼 ± 𝐽) ∪ 𝐼 ∪ 𝐾̃ be our partition mentioned above. Let 𝑆 = (𝐼 ± 𝐽) ∪ 𝐾 be the previous
partition in [32]. If the tuning results of the previous partition satisfies #𝐾 ≥ #𝐼 , we can save a certain amount of
𝔽𝑝-multiplications using our partition after tuning when computing an 𝓁-isogeny.

Proof. We fix 𝑏̃ = 𝑏 and 𝑏̃′ = 𝑏′ for our partition after obtaining the optimal (𝑏, 𝑏′) for the previous partition in [32].
The size of 𝐾 is: #𝐾 = 𝓁−1

2 − 2𝑏𝑏′. If it satisfies #𝐾 ≥ #𝐼 , we have:

#𝐾̃ = 𝓁 − 1
2

− 𝑏̃′(2𝑏̃ + 1) = #𝐾 − #𝐼 ≥ 0.

Thus we can derive a relationship between #𝐾 and #𝐾̃:

#𝐾 − #𝐾̃ = #𝐼 = #𝐼.

Therefore, we can save #𝐼 scalar multiplication computations compared with the previous partition when computing
the sets of 𝑥-coordinates 𝑥𝐼, 𝑥𝐽 and 𝑥𝐾̃ .

Furthermore, the tuple (𝑏̃, 𝑏̃′) = (𝑏, 𝑏′) may not correspond to the optimal partition for our situation. We can reduce
more 𝔽𝑝-multiplications by taking the tuning result (𝑏̃, 𝑏̃′) with respect to our optimal partition.

Remark 1. Note that the tuning program counts the whole 𝔽𝑝-multiplications for an 𝓁-isogeny computation, including
the evaluation of the resultant 𝑅𝑒𝑠𝑧(ℎ𝐼 (𝑧), 𝐸𝐽 (𝑧, 𝑥𝑗)). Therefore, the cost we save does not depend only on the
computations of 𝑥𝐼, 𝑥𝐽 and 𝑥𝐾 . We may also save some 𝔽𝑝-multiplications although the condition #𝐾 ≥ #𝐼 is
not verified.

We can share some computations of scalar multiplications when computing 𝑥𝐼, 𝑥𝐽 and 𝑥𝐾 (resp. 𝑥𝐼, 𝑥𝐽 and
𝑥𝐾̃). Now we propose an example below for illustration. We take the odd prime 𝓁 = 191, and the tuning result of the
191-isogeny using the previous partition corresponds to the tuple (𝑏, 𝑏′) = (7, 6). Thus the size of 𝐾 is 𝓁−1

2 −2𝑏𝑏′ = 11,
which satisfies the condition #𝐾 ≥ #𝐼 as stated in Theorem 2.

Example 1. Consider the odd prime 𝓁 = 191. Using the previous partition, we have:

𝐼 = {14, 42,⋯ , 154}, 𝐽 = {1, 3,⋯ , 13},
𝐾 = {169, 171,⋯ , 189}.

The set 𝑥𝐾 can be represented as:

𝑥𝐾 = {𝑥([2]𝑃), 𝑥([4]𝑃), ⋯ , 𝑥([22]𝑃)}.

And it takes a point doubling and six differential additions to obtain 𝑥𝐽 and 𝑥𝐾[0]. After obtaining 𝑥𝐽 , the elements:
𝑥𝐾[2𝑖], 𝑖 = 1,⋯ , 5 can be directly doubled from 𝑥𝐽 [𝑖], 𝑖 = 1,⋯ , 5, respectively. In addition, we can execute five
point doublings to compute the remaining elements of 𝑥𝐾 except for 𝑥𝐾[0]. Hence it takes ten point doublings to
obtain 𝑥𝐾 . Finally we deal with 𝑥𝐼 . The first element 𝑥𝐼[0] has been computed in 𝑥𝐾 , and the addition step can be
obtained by doubling it. Therefore, the cost of computing 𝑥𝐼 includes five differential additions and a point doubling.

For Montgomery model, a differential addition and a doubling need 4M + 2S and 4M + 2C, respectively [5].
The notation C represents multiplication of an element of 𝔽𝑝 by a constant of 𝔽𝑝. Since we need to execute a chain of
𝓁-isogenies on CTIDH, the two constants in 𝔽𝑝 that need to be multiplied are not fixed. Thus C can be roughly regarded
as M. For simplicity we take M = S, then the total computational cost of 𝑥𝐼, 𝑥𝐽 and 𝑥𝐾 becomes 138M.

Take (𝑏̃, 𝑏̃′) = (𝑏, 𝑏′) = (7, 6) for our partition, we have:

𝐼 = {16, 46,⋯ , 166}, 𝐽 = {2, 4,⋯ , 14},

First Author et al.: Preprint submitted to Elsevier Page 6 of 13

Efficient Implementations of Square-root Vélu’s Formulas

𝐾̃ = {182, 184,⋯ , 190}.

In this case 𝑥𝐾̃ = {𝑥(𝑃), 𝑥([3]𝑃),⋯ , 𝑥([9]𝑃)}. Similarly, it takes four differential additions and a point doubling to
obtain 𝑥𝐾̃ and 𝑥𝐽 [0]. Then the elements: 𝑥𝐽 [2], 𝑥𝐽 [4] and 𝑥𝐽 [6] can be doubled from 𝑥𝐾̃[1], 𝑥𝐾̃[2] and 𝑥𝐾̃[3],
respectively. The remaining elements except for 𝑥𝐽 [0] in 𝑥𝐽 can be obtained by performing three point doublings.
Finally the first element 𝑥𝐼[0] can be doubled from 𝑥𝐽 [3]. The addition step of 𝑥𝐼 can be obtained by adding the first
element of 𝑥𝐼 and the last element of 𝑥𝐽 . Thus it takes six differential additions and a point doubling to obtain 𝑥𝐼 . The
total computational cost is 108M. We can save 30M compared with the partition in [32] when computing 𝑥𝐼, 𝑥𝐽 and
𝑥𝐾̃ . From Theorem 2, the tuple (𝑏̃, 𝑏̃′) = (7, 6) may not correspond to the optimal partition. Therefore we can reduce
at least 30 𝔽𝑝-multiplications using our partition when computing the 191-isogeny.

On the basis of the above analysis, sharing the computations of scalar multiplications as far as possible can also
reduce the cost of 𝔽𝑝-multiplications. In our current partition, the intersection of 𝑥𝐽 and 𝑥𝐾̃ is empty. In other words,
the shared computations between 𝑥𝐾̃ and 𝑥𝐽 are limited which may also bring some computational redundancy if #𝐾̃
is large. To avoid this, we still need to make an adjustment.

By exploiting the symmetry of the points in ⟨𝑃 ⟩, we can rewrite the set 𝑆 as 𝑆̃ = {1, 2,⋯ , 𝓁−12 } and modify the
partition of 𝐼, 𝐽 , 𝐾 as follows:

𝐼 = {𝓁 − 1
2

− 𝑏̃′(2𝑏̃ + 1) + 𝑏̃ + 1 + 𝑖(2𝑏̃ + 1)| 𝑖 = 0, 1,⋯ , 𝑏̃′ − 1},

and

𝐽 ={𝑗 + 1| 𝑗 = 0, 1,⋯ , 𝑏̃ − 1},

𝐾̃ ={1, 2,⋯ , 𝓁 − 1
2

− 𝑏̃′(2𝑏̃ + 1)}

where 𝑏̃ and 𝑏̃′ are the sizes of the sets 𝐽 and 𝐼 , respectively. Similarly to our first partition, we also have ℎ𝑆 (𝑥) = ℎ𝑆̃ (𝑥)
and the set 𝐼 ± 𝐽 = (𝐼 + 𝐽) ∪ (𝐼 − 𝐽) is a disjoint union. Let 𝑖0 be an element of 𝐼 , according to the above adjustment
we have

1 ≤ 𝓁 − 1
2

− 2𝑏̃𝑏̃′ − 𝑏̃′ + 𝑏̃ + 1 ≤ 𝑖0 ≤ 𝓁 − 1
2

which implies that the set 𝐼 is completely included in 𝑆̃. Hence, the evaluation formula of ℎ𝑆̃ (𝑥) can also be rewritten
as:

ℎ𝑆̃ (𝑥) = ℎ𝐼 (𝑥)ℎ𝐾̃ (𝑥) ⋅ 𝑅𝑒𝑠𝑧(ℎ𝐼 (𝑧), 𝐸𝐽 (𝑧, 𝑥𝑗)).

By applying the new partition above, the sets 𝑥𝐼, 𝑥𝐽 and 𝑥𝐾̃ fulfill the condition: 𝑥𝐽 ∩ 𝑥𝐾̃ ≠ ∅ and 𝐼 ⊂ 𝑆̃.
Therefore, we can share more computations of scalar multiplications compared with our initial partition when
computing 𝑥𝐼, 𝑥𝐽 and 𝑥𝐾̃ . Besides, we can determine the first element of 𝑥𝐼 by adding the last element of 𝑥𝐾̃
with the point [𝑏̃ + 1]𝑃 using 𝑥-only differential addition after computing 𝑥𝐽 and 𝑥𝐾̃ and the addition step of 𝑥𝐼 can
be obtained by executing: [2𝑏̃ + 1]𝑃 ← [𝑏̃ + 1]𝑃 + [𝑏̃]𝑃 . Algorithm 1 shows the computational procedure of 𝑥𝐼, 𝑥𝐽
and 𝑥𝐾̃ . We only consider the case #𝐽 > #𝐾̃ , to which the procedures of the other cases are similar.

In Algorithm 1, the function xADD(𝑥𝑃 , 𝑥𝑄, 𝑥𝑃−𝑄) represents the 𝑥-only differential addition on Montgomery
curves. The output of xADD is the 𝑥-coordinate of 𝑃 +𝑄. The function xDBL(𝑥𝑃) returns the 𝑥-coordinate of [2]𝑃 .

We continue to take 𝓁 = 191 and use the partition with respect to the tuple (𝑏̃, 𝑏̃′) = (7, 6) for our new partition.
We obtain that:

𝐼 = {13, 28,⋯ , 88}, 𝐽 = {1, 2,⋯ , 7}, 𝐾̃ = {1, 2,⋯ , 5}.

According to Algorithm 1, it takes three differential additions and three point doublings to obtain 𝑥𝐽 . After computing
𝑥𝐽 , we need to perform one more differential addition to obtain 𝑥([8]𝑃) which is used to compute the addition step
of 𝑥𝐼 . Observing that 𝐾̃ is completely included in 𝐽 , we do not need to redundantly compute 𝑥𝐾̃ . Finally, the first
element of 𝑥𝐼 can be obtained by 𝑥𝐼[0] = 𝑥𝐽 [5]+𝑥𝐽 [6] and the addition step of 𝑥𝐼 can be obtained by adding 𝑥𝐽 [6]
and 𝑥([8]𝑃). Thus, it needs seven differential additions to obtain 𝑥𝐼 . The total computational cost is 84M. We can save
54M and 24M compared with the partition in [32] and our first partition respectively, when computing 𝑥𝐼, 𝑥𝐽 and
𝑥𝐾̃ . In conclusion, we consider the latter partition for implementation.

First Author et al.: Preprint submitted to Elsevier Page 7 of 13

Efficient Implementations of Square-root Vélu’s Formulas

Algorithm 1 Computing the sets of 𝑥-coordinates according to the new partition.
Input: The kernel of the 𝓁-isogeny 𝜑 : ⟨𝑃 ⟩. Positive integers (𝑏̃, 𝑏̃′) which are the sizes of 𝐼 and 𝐽 , respectively. The partition 𝐽 , 𝐼 and 𝐾̃ which

satisfies #𝐽 > #𝐾̃ .
Output: The sets of 𝑥-coordinates 𝑥𝐼, 𝑥𝐽 and 𝑥𝐾̃ .
1: 𝑥2𝑃 ← xDBL(𝑥𝑃), 𝑥𝐽 [0] ← 𝑥𝑃 , 𝑥𝐽 [1] ← 𝑥2𝑃 , 𝑖 ← 2
2: while 𝑖 < 𝑏̃ do
3: 𝑥𝐽 [𝑖] ← xADD(𝑥𝐽 [𝑖 − 1], 𝑥𝑃 , 𝑥𝐽 [𝑖 − 2])
4: 𝑥𝐽 [𝑖 + 1] ← xDBL(𝑥𝐽 [⌊𝑖∕2⌋])
5: 𝑖 ← 𝑖 + 2
6: end while
7: if 𝑏̃ % 2 == 0 then
8: 𝑥𝐽 [𝑏̃] ← xADD(𝑥𝐽 [𝑏̃ − 1], 𝑥𝑃 , 𝑥𝐽 [𝑏̃ − 2])
9: end if

10: for 𝑖 from 0 to 𝓁−1
2 − 𝑏̃′(2𝑏̃ + 1) − 1 do

11: 𝑥𝐾̃[𝑖] ← 𝑥𝐽 [𝑖]
12: end for
13: 𝑥𝐼[0] ← xADD(𝑥𝐽 [𝑏̃], 𝑥𝐽 [𝓁−12 − 𝑏̃′(2𝑏̃ + 1) − 1], 𝑥𝐽 [𝑏̃ + 1 − 𝓁−1

2 + 𝑏̃′(2𝑏̃ + 1)])
14: 𝐼𝑠𝑡𝑒𝑝 ← xADD(𝑥𝐽 [𝑏̃], 𝑥𝐽 [𝑏̃ − 1], 𝑥𝑃)
15: 𝑥𝐼[1] ← xADD(𝐼𝑠𝑡𝑒𝑝, 𝑥𝐼[0], 𝑥𝐽 [𝑏̃ − 𝓁−1

2 + 𝑏̃′(2𝑏𝑏̃ + 1)])
16: for 𝑖 from 2 to 𝑏̃′ − 1 do
17: 𝑥𝐼[𝑖] ← xADD(𝑥𝐼[𝑖 − 1], 𝐼𝑠𝑡𝑒𝑝, 𝑥𝐼[𝑖 − 2])
18: end for
19: return (𝑥𝐼, 𝑥𝐽 , 𝑥𝐾̃)

3.2. Optimizing the implementation of polynomial multiplications
In this subsection, we use the techniques of lazy reduction and generalized interleaved Montgomery multiplica-

tion [41] to speed up the computations of polynomial multiplications involved in evaluating 𝓁-isogenies by improving
the implementations of the sums of products.

Let 𝐴(𝑥) =
∑𝑚

𝑖=1 𝑎𝑖𝑥
𝑖 and 𝐵(𝑥) =

∑𝑛
𝑗=1 𝑏𝑗𝑥

𝑗 ∈ 𝔽𝑝[𝑥] be two polynomials of degree 𝑚 and 𝑛. Let 𝐶(𝑥) =
𝐴(𝑥)𝐵(𝑥) =

∑𝑚+𝑛
𝑘=1 𝑐𝑘𝑥

𝑘 be the product of 𝐴(𝑥) and 𝐵(𝑥). The Karatsuba multiplication [47] is done by dividing
the polynomials 𝐴(𝑥) (resp. 𝐵(𝑥)) into two parts: 𝐴0 + 𝐴1𝑥

⌈𝑚
2 ⌉ (resp. 𝐵0 + 𝐵1𝑥

⌈ 𝑛
2 ⌉) and then using the equation:

𝐴0𝐵1 + 𝐴1𝐵0 = (𝐴0 + 𝐴1)(𝐵0 + 𝐵1) − 𝐴0𝐵0 − 𝐴1𝐵1 to obtain 𝐴0𝐵1 + 𝐴1𝐵0. Recurse the procedures above and
recombine the coefficients, we finally obtain the product 𝐶(𝑥).

After repeatedly recursing the polynomials 𝐴(𝑥) and 𝐵(𝑥), we only need to deal with the product of two small
polynomials in the final step. Let𝑚×𝑛 represents the product of two polynomials of degrees𝑚 and 𝑛. Let (𝑎0, 𝑎1,⋯ , 𝑎𝑚)
represents a degree-𝑚 polynomial 𝐴 with coefficients 𝑎𝑖, 𝑖 = 0,⋯ , 𝑚. Now we focus on the three products: 𝟐 × 𝟏 ,
𝟑 × 𝟏 and 𝟐 × 𝟐 which are recursed down from the starting product 𝐶 . Note that the sums of products

∑1
𝑖=0 𝑎𝑖𝑏𝑖

and
∑2

𝑖=0 𝑎𝑖𝑏𝑖 are required when constructing the above small products. In the current implementation of CTIDH, the
technique of lazy reduction or generalized interleaved Montgomery multiplication has not yet been utilized to optimize
the computation of the sums of products.

The "low", "middle" and "high" products of two polynomials can also be obtained by combining the Karatsuba
multiplication with lazy reduction or generalized interleaved Montgomery multiplication like the general products.

Using lazy reduction. In the following, we explore how to combine lazy reduction and the Karatsuba multipli-
cation [47] when performing the small products mentioned above in the last step of polynomial multiplications over
𝔽𝑝.

Algorithm 2 illustrates the computational procedure of product 𝟐 × 𝟏 using the Karatsuba multiplication and lazy
reduction. The functions fp-mul(𝑎, 𝑏) and fp-rdcn(𝑎) are the integer multiplication and 𝔽𝑝-reduction, respectively.

From Algorithm 2 we can see that it takes five integer multiplications and four 𝔽𝑝-reductions to obtain the product
using lazy reduction. If not, we have to perform five 𝔽𝑝- multiplications. This is equal to a saving of one modular
reduction each time we compute 𝟐× 𝟏. The situations of the products 𝟑× 𝟏 and 𝟐× 𝟐 are similar to 𝟐× 𝟏 thus we omit
them for simplicity.

Using generalized interleaved Montgomery multiplication. Now we apply the generalized interleaved
Montgomery multiplication [41] to speed up the computations of the sums of products

∑𝑡
𝑖=0 𝑎𝑖𝑏𝑖.

First Author et al.: Preprint submitted to Elsevier Page 8 of 13

Efficient Implementations of Square-root Vélu’s Formulas

Algorithm 2 Product 𝟐 × 𝟏 : utilizing the Karatsuba multiplication and lazy reduction.
Input: A degree-2 polynomial 𝐴 = (𝑎0, 𝑎1, 𝑎2) and a degree-1 polynomial 𝐵 = (𝑏0, 𝑏1).
Output: The product 𝐶 = 𝐴 ∗ 𝐵 = (𝑐0, 𝑐1, 𝑐2, 𝑐3).
1: 𝑐0 ← fp-muln(𝑎0, 𝑏0) = 𝑎0𝑏0
2: 𝑡𝑚𝑝1 ← fp-muln(𝑎0 + 𝑎1, 𝑏0 + 𝑏1) = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)
3: 𝑡𝑚𝑝2 ← fp-muln(𝑎1, 𝑏1) = 𝑎1𝑏1
4: 𝑐1 ← 𝑡𝑚𝑝1 − 𝑡𝑚𝑝2 − 𝑐0 = 𝑎0𝑏1 + 𝑎1𝑏0
5: 𝑐2 ← fp-muln(𝑎2, 𝑏0) + 𝑡𝑚𝑝2 = 𝑎2𝑏0 + 𝑎1𝑏1
6: 𝑐3 ← fp-muln(𝑎2, 𝑏1) = 𝑎2𝑏1
7: for 𝑖 from 0 to 3 do
8: 𝑐𝑖 ← fp-rdcn(𝑐𝑖, 𝑐𝑖) = 𝑐𝑖𝑅−1 mod 𝑝
9: end for

10: return 𝐶 ← (𝑐0, 𝑐1, 𝑐2, 𝑐3)

We first recall the Montgomery multiplication and use the same notations as in Sec. 2.3. A straight implementation
of Equation 2 requires the use of a huge number of GPRs (general purpose registers). Another approach which processes
the recovery of one digit at a time by reducing with 𝑟 = 2𝑤 at each iteration can balance the use of GPRs. It is called
radix-𝑟 interleaved Montgomery multiplication [41].

The method above can be easily generalized to the sums of products [41], which is called generalized Montgomery
multiplication. Algorithm 3 illustrates the computational procedure of 𝟐 × 𝟐 . Let fp-mul(𝑎, 𝑏), fp-sum2(𝑎, 𝑏) and
fp-sum3(𝑎, 𝑏) be functions that compute 𝑎𝑏𝑅−1 mod 𝑝,

∑1
𝑖=0 𝑎𝑖𝑏𝑖 ⋅ 𝑅

−1 and
∑2

𝑖=0 𝑎𝑖𝑏𝑖 ⋅ 𝑅
−1 utilizing (generalized)

interleaved Montgomery multiplication, respectively.

Algorithm 3 Case 𝟐 × 𝟐: computing the sums of products using interleaved Montgomery multiplications
Input: A degree-2 polynomial 𝐴 = (𝑎0, 𝑎1, 𝑎2) and a degree-1 polynomial 𝐵 = (𝑏0, 𝑏1).
Output: The product 𝐶 = 𝐴 ∗ 𝐵 = (𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4).
1: 𝑐0 ← fp-mul(𝑎0, 𝑏0) = 𝑎0𝑏0𝑅−1 mod 𝑝
2: 𝑐1 ← fp-sum2(𝑎0, 𝑎1, 𝑏1, 𝑏0) = (𝑎0𝑏1 + 𝑎1𝑏0)𝑅−1 mod 𝑝
3: 𝑐2 ← fp-sum3(𝑎0, 𝑎1, 𝑎2, 𝑏2, 𝑏1, 𝑏0) = (𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0)𝑅−1 mod 𝑝
4: 𝑐3 ← fp-sum2(𝑎1, 𝑎2, 𝑏2, 𝑏1) = (𝑎1𝑏2 + 𝑎2𝑏1)𝑅−1 mod 𝑝
5: 𝑐4 ← fp-mul(𝑎2, 𝑏2) = 𝑎2𝑏2𝑅−1 mod 𝑝
6: return 𝐶 ← (𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4)

Although using generalized interleaved Montgomery multiplication requires more 𝔽𝑝-modular reductions and
multiplications to perform than using lazy reduction, the great balance between the intermediate results and GPRs
ensures the crucial savings of the use of memory. It is a trade-off between the underlying instructions of multiplications
and memory reads/writes. Note that Algorithm 3 directly calculates the sums of products modulo 𝑝 which is
incompatible with the procedures of lazy reduction. Hence we cannot combine the above two techniques together.

4. Experimental data
In this section, we first compare the computational cost (𝔽𝑝 multiplication) between applying the previous

partition in [32] and ours. The numbers of underlying instructions using lazy reduction and generalized Montgomery
multiplication are also illustrated. Finally we present the clock cycles required for executing an 𝓁-isogeny in our
implementation. The technique of lazy reduction (resp. generalized Montgomery multiplication) is abbreviated as
LZYR (resp. INTL) throughout the remaining part of this paper.

4.1. Efficiency comparison
From Section 3 we know that in practice the optimal partition is obtained by tuning the values of (𝑏, 𝑏′), which are

the cardinalities of 𝐽 and 𝐼 , respectively. We use a tuning program to obtain the optimal partition for each 𝓁-isogeny
in CTIDH512. Figure 1 illustrates the cost associated with the 𝓁-isogenies involved in CTIDH512, comparing the
original partition [32] with ours. The horizontal and vertical axes represent the degree of isogenies (3 ≤ 𝓁 ≤ 587) and
the 𝔽𝑝-multiplications divided by the square root of degree, respectively. We reduce the number of 𝔽𝑝-multiplications
for almost all 𝓁-isogenies except 𝓁 = 353 in CTIDH512 compared to the original partition. Especially for 𝓁 = 191,
the optimization is about 5.64%.

First Author et al.: Preprint submitted to Elsevier Page 9 of 13

Efficient Implementations of Square-root Vélu’s Formulas

The tuning results also indicate that our partition can enhance the application of
√

élu. According to Figure 1 ,√
élu performs better when 𝓁 ≥ 83 in the previous implementation of CTIDH512 [13]. However, by using our new

partition, the condition is relaxed to 𝓁 ≥ 73.

Figure 1: Comparison of 𝔽𝑝-multiplications for the 𝓁-isogenies required in CTIDH512 between the previous work [32] and
our new partition (the result has been tuned). The 𝑥-axis represents the degree of each isogeny.

Figure 2 presents the cost of instructions of multiplications and memory reads/writes when executing different
prime degree 𝓁-isogenies, respectively. The horizontal and vertical axes represent the degree of isogenies (3 ≤ 𝓁 ≤
587) and the number of assembly instructions divided by the square root of degree, respectively.

The average ratio of the number of multiplication instructions when computing the following 𝓁-isogenies (𝓁 > 89)
using LZYR to the previous work is 89.3%. When 𝓁 = 137, we can achieve the maximum saving of multiplication
instructions at about 15.75%. As for INTL, the average ratio of the number of memory reads/writes instructions to the
previous work is 83.04%. When 𝓁 = 347, the saving is up to 24.25%.

Figure 2: Comparison of instruction counts between utilizing LZYR/INTL (Algorithm 2 and Algorithm 3) and the previous
work [13] for computing each 𝓁-isogeny over 𝔽𝑝. The 𝑥-axis represents the degree of each isogeny.

4.2. Improvement of
√

élu’s Formula on CTIDH512
Based on the code provided in [13], we compile and benchmark our code on Intel(R) Core(TM) i9-12900K 3.20

GHz with TurboBoost and hyperthreading features disabled. Compilation was carried out using the command clang

-O3. The version of clang is 11.3.0.
We combine the new partition with LZYR and INTL respectively for implementation. To make the data more

reliable, we executed each 𝓁-isogeny which needs to be computed in CTIDH512 for 1.6 × 103 times and took the
average cycle counts. The performance results of CPU clock cycles for each 𝓁-isogeny are presented in Figure 3. The
horizontal and vertical axes represent the degree of isogenies (3 ≤ 𝓁 ≤ 587) and CPU clock cycles divided by the
square root of degree, respectively.

Compared with the previous work, when computing the large degree 𝓁-isogenies, the performance of applying our
new partition + LZYR is 4.44%−10.96% faster than that of the previous work. In the case of utilizing our new partition
+ INTL, we reduced the clock cycles by approximately 8.54% − 16.05%.

First Author et al.: Preprint submitted to Elsevier Page 10 of 13

Efficient Implementations of Square-root Vélu’s Formulas

Figure 3: Performance comparison (in terms of clock cycles) between the proposed methods (Algorithm 1 + Algorithm 2
and Algorithm 1 + Algorithm 3) and the previous work [13] for computing each 𝓁-isogeny over 𝔽𝑝.

5. Conclusion and Future Work
In this paper, we propose a new partition in the computational process of 𝓁-isogenies to reduce the number of

scalar multiplications. At the underlying level, we also apply two approaches to save the instructions of multiplications
and memory reads/writes, which speed up the polynomial multiplications over finite field 𝔽𝑝 in the process of

√
élu.

To a certain extent, they impact the software implementation of cryptographic schemes including CSIDH/CTIDH,
the CSIDH-based [17, 18, 19, 20] and the quaternion-based [21, 22, 23, 24] digital signature schemes. Furthermore,
our new partition can also be extended to the public key encryption FESTA [25] and the key exchange protocol
dCSIDH [48].

The future work can involve: finding a more efficient partition or even reduce the computational complexity of√
élu, and studying the performance of the proposed method using school-book forms in combination with the AVX-

512 vector instructions available in some Intel processors. Moreover, we aim to adapt our method for implementations
on other software platforms, constrained devices and hardware platforms.

Declaration of competing interest
We declare that there are no competing finacial interests which appeared to influence this paper.

Data availability
The data will be available on request.

Acknowledgement
The authors would like to thank anonymous reviewers for their valuable comments and suggestion. This work is

supported by Guangdong Major Project of Basic and Applied Basic Research (No. 2019B030302008).

References
[1] J.-M. Couveignes, Hard Homogeneous Spaces, Cryptology ePrint Archive, Paper 2006/291 (2006).
[2] A. Rostovtsev, A. Stolbunov, PUBLIC-KEY CRYPTOSYSTEM BASED ON ISOGENIES, Cryptology ePrint Archive, Paper 2006/145 (2006).
[3] A. Childs, D. Jao, V. Soukharev, Constructing elliptic curve isogenies in quantum subexponential time, Journal of Mathematical Cryptology

8 (1) (2014) 1–29.
[4] D. Jao, L. De Feo, Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies, in: B.-Y. Yang (Ed.), Post-

Quantum Cryptography, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 19–34.
[5] M. Campagna, C. Costello, B. Hess, A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, D. Urbanik, et al., Supersingular

isogeny key encapsulation (2019).
[6] W. Castryck, T. Decru, An Efficient Key Recovery Attack onăSIDH, in: C. Hazay, M. Stam (Eds.), Advances in Cryptology – EUROCRYPT

2023, Springer Nature Switzerland, Cham, 2023, pp. 423–447.
[7] L. Maino, C. Martindale, L. Panny, G. Pope, B. Wesolowski, A Direct Key Recovery Attack onăSIDH, in: C. Hazay, M. Stam (Eds.), Advances

in Cryptology – EUROCRYPT 2023, Springer Nature Switzerland, Cham, 2023, pp. 448–471.
[8] D. Robert, Breaking SIDH inăPolynomial Time, in: C. Hazay, M. Stam (Eds.), Advances in Cryptology – EUROCRYPT 2023, Springer Nature

Switzerland, Cham, 2023, pp. 472–503.
[9] L. De Feo, C. Delpech de Saint Guilhem, T. B. Fouotsa, P. Kutas, A. Leroux, C. Petit, J. Silva, B. Wesolowski, Séta: Supersingular Encryption

fromăTorsion Attacks, in: M. Tibouchi, H. Wang (Eds.), Advances in Cryptology – ASIACRYPT 2021, Springer International Publishing,
Cham, 2021, pp. 249–278.

First Author et al.: Preprint submitted to Elsevier Page 11 of 13

Efficient Implementations of Square-root Vélu’s Formulas

[10] C. Costello, B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion, in: S. Moriai, H. Wang (Eds.), Advances in Cryptology
– ASIACRYPT 2020, Springer International Publishing, Cham, 2020, pp. 440–463.

[11] W. Castryck, T. Lange, C. Martindale, L. Panny, J. Renes, CSIDH: An Efficient Post-Quantum Commutative Group Action, in: T. Peyrin,
S. Galbraith (Eds.), Advances in Cryptology – ASIACRYPT 2018, Springer International Publishing, Cham, 2018, pp. 395–427.

[12] J. Kieffer, Étude et accélération du protocole déchange de clés de Couveignes–Rostovtsev–Stolbunov, Ph.D. thesis, Masters thesis, Inria Saclay
& Université Paris VI (2017).

[13] G. Banegas, D. J. Bernstein, F. Campos, T. Chou, T. Lange, M. Meyer, B. Smith, J. Sotáková, CTIDH: faster constant-time CSIDH, IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021 (4) (2021) 351387.

[14] X. Bonnetain, A. Schrottenloher, Quantum Security Analysis of CSIDH, in: A. Canteaut, Y. Ishai (Eds.), Advances in Cryptology –
EUROCRYPT 2020, Springer International Publishing, Cham, 2020, pp. 493–522.

[15] C. Peikert, He Gives C-Sieves on the CSIDH, in: A. Canteaut, Y. Ishai (Eds.), Advances in Cryptology – EUROCRYPT 2020, Springer
International Publishing, Cham, 2020, pp. 463–492.

[16] J. Chávez-Saab, J. Chi-Domínguez, S. Jaques, F. Rodríguez-Henríquez, The SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny
action with low exponents, J. Cryptogr. Eng. 12 (3) (2022) 349–368.

[17] L. De Feo, S. D. Galbraith, SeaSign: Compact Isogeny Signatures from Class Group Actions, in: Y. Ishai, V. Rijmen (Eds.), Advances in
Cryptology – EUROCRYPT 2019, Springer International Publishing, Cham, 2019, pp. 759–789.

[18] W. Beullens, T. Kleinjung, F. Vercauteren, CSI-FiSh: Efficient Isogeny Based Signatures Through Class Group Computations, in: S. D.
Galbraith, S. Moriai (Eds.), Advances in Cryptology – ASIACRYPT 2019, Springer International Publishing, Cham, 2019, pp. 227–247.

[19] S. Atapoor, K. Baghery, D. Cozzo, R. Pedersen, CSI-SharK: CSI-Fish withăSharing-friendly Keys, in: L. Simpson, M. A. Rezazadeh Baee
(Eds.), Information Security and Privacy, Springer Nature Switzerland, Cham, 2023, pp. 471–502.

[20] L. D. Feo, T. B. Fouotsa, P. Kutas, A. Leroux, S.-P. Merz, L. Panny, B. Wesolowski, Scallop: Scaling theăcsi-fish, in: A. Boldyreva,
V. Kolesnikov (Eds.), Public-Key Cryptography – PKC 2023, Springer Nature Switzerland, Cham, 2023, pp. 345–375.

[21] S. D. Galbraith, C. Petit, J. Silva, Identification Protocols and Signature Schemes Based on Supersingular Isogeny Problems, in: T. Takagi,
T. Peyrin (Eds.), Advances in Cryptology – ASIACRYPT 2017, Springer International Publishing, Cham, 2017, pp. 3–33.

[22] L. De Feo, D. Kohel, A. Leroux, C. Petit, B. Wesolowski, SQISign: Compact Post-quantum Signatures from Quaternions and Isogenies, in:
S. Moriai, H. Wang (Eds.), Advances in Cryptology – ASIACRYPT 2020, Springer International Publishing, Cham, 2020, pp. 64–93.

[23] L. De Feo, A. Leroux, P. Longa, B. Wesolowski, New Algorithms forătheăDeuring Correspondence, in: C. Hazay, M. Stam (Eds.), Advances
in Cryptology – EUROCRYPT 2023, Springer Nature Switzerland, Cham, 2023, pp. 659–690.

[24] P. Dartois, A. Leroux, D. Robert, B. Wesolowski, SQISignHD: New Dimensions in Cryptography, Cryptology ePrint Archive, Paper 2023/436
(2023).

[25] A. Basso, L. Maino, G. Pope, FESTA: Fast Encryption fromăSupersingular Torsion Attacks, in: J. Guo, R. Steinfeld (Eds.), Advances in
Cryptology – ASIACRYPT 2023, Springer Nature Singapore, Singapore, 2023, pp. 98–126.

[26] J. Vélu, Isogénies entre courbes elliptiques, CR Acad. Sci. Paris, Séries A 273 (1971) 305–347.
[27] C. Costello, H. Hisil, A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies, in: T. Takagi, T. Peyrin (Eds.), Advances

in Cryptology – ASIACRYPT 2017, Springer International Publishing, Cham, 2017, pp. 303–329.
[28] C. Costello, P. Longa, M. Naehrig, Efficient Algorithms for Supersingular Isogeny Diffie-Hellman, in: M. Robshaw, J. Katz (Eds.), Advances

in Cryptology – CRYPTO 2016, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 572–601.
[29] M. Meyer, S. Reith, A Faster Way to the CSIDH, in: D. Chakraborty, T. Iwata (Eds.), Progress in Cryptology – INDOCRYPT 2018, Springer

International Publishing, Cham, 2018, pp. 137–152.
[30] Y. Huang, Y. Jin, Z. Hu, F. Zhang, Optimizing the evaluation of -isogenous curve for isogeny-based cryptography, Information Processing

Letters 178 (2022) 106301.
[31] G. Banegas, V. Gilchrist, A. L. Dévéhat, B. Smith, Fast andăFrobenius: Rational Isogeny Evaluation overăFinite Fields, in: A. Aly, M. Tibouchi

(Eds.), Progress in Cryptology – LATINCRYPT 2023, Springer Nature Switzerland, Cham, 2023, pp. 129–148.
[32] D. J. Bernstein, L. de Feo, A. Leroux, B. Smith, Faster computation of isogenies of large prime degree, in: S. Galbraith (Ed.), ANTS-XIV - 14th

Algorithmic Number Theory Symposium, Vol. 4 of Proceedings of the Fourteenth Algorithmic Number Theory Symposium (ANTS-XIV),
Mathematical Sciences Publishers, Auckland, New Zealand, 2020, pp. 39–55.

[33] G. Adj, J.-J. Chi-Domínguez, F. Rodríguez-Henríquez, Karatsuba-based square-root Vélus formulas applied to two isogeny-based protocols,
Journal of Cryptographic Engineering (2022) 1–18.

[34] T. Moriya, H. Onuki, T. Takagi, How to Construct CSIDH on Edwards Curves, in: S. Jarecki (Ed.), Topics in Cryptology – CT-RSA 2020,
Springer International Publishing, Cham, 2020, pp. 512–537.

[35] T. Moriya, H. Onuki, T. Takagi, How to Construct CSIDH on Edwards Curves, Cryptology ePrint Archive, Paper 2019/843 (2019).
[36] S. Kim, Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves, IEEE Access 9 (2021) 154500–

154512.
[37] Z. Hu, Z. Liu, L. Wang, Z. Zhou, Simplified isogeny formulas on twisted Jacobi quartic curves, Finite Fields and Their Applications 78 (2022)

101981.
[38] Z. Hu, L. Wang, Z. Zhou, Isogeny Computation onăTwisted Jacobi Intersections, in: R. Deng, F. Bao, G. Wang, J. Shen, M. Ryan, m. Meng,

D. Wang (Eds.), Information Security Practice and Experience, Springer International Publishing, Cham, 2021, pp. 46–56.
[39] Z. Tao, Z. Hu, Z. Zhou, Faster isogeny computation on twisted hessian curves, Applied Mathematics and Computation 444 (2023) 127823.
[40] M. Scott, Implementing cryptographic pairings, in: Proceedings of the First International Conference on Pairing-Based Cryptography,

Pairing’07, Springer-Verlag, Berlin, Heidelberg, 2007, p. 177196.
[41] P. Longa, Efficient Algorithms for Large Prime Characteristic Fields and Their Application to Bilinear Pairings, IACR Transactions on

Cryptographic Hardware and Embedded Systems 2023 (3) (2023) 445472.
[42] S. D. Galbraith, Mathematics of Public Key Cryptography, 1st Edition, Cambridge University Press, USA, 2012.

First Author et al.: Preprint submitted to Elsevier Page 12 of 13

Efficient Implementations of Square-root Vélu’s Formulas

[43] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Mathematics of computation 48 (177) (1987) 243–264.
[44] D. Moody, D. Shumow, Analogues of Vélus formulas for isogenies on alternate models of elliptic curves, Mathematics of Computation

85 (300) (2016) 1929–1951.
[45] J. W. S. Cassels, LMSST: 24 Lectures on Elliptic Curves, London Mathematical Society Student Texts, Cambridge University Press, 1991.
[46] P. L. Montgomery, Modular multiplication without trial division, Mathematics of Computation (Apr 1985).
[47] A. Karatsuba, Multiplication of multidigit numbers on automata, in: Soviet physics doklady, Vol. 7, 1963, pp. 595–596.
[48] F. Campos, J. Chavez-Saab, J.-J. Chi-Domínguez, M. Meyer, K. Reijnders, F. Rodríguez-Henríquez, P. Schwabe, T. Wiggers, Optimizations

and practicality of high-security csidh, Cryptology ePrint Archive, Paper 2023/793 (2023).

First Author et al.: Preprint submitted to Elsevier Page 13 of 13

