
Efficient Implementation of
√

élu’s Formulas

Jianming Lin1[0009−0007−9144−1432], Weize Wang2[0009−0000−0516−1776], Changan
Zhao1,2,3[2222−−3333−4444−5555], and Yuhao Zheng1

1 School of Mathematics, Sun Yat-sen University,
Guangzhou 510275, P.R.China
linjm28@mail2.sysu.edu.cn
zhaochan3@mail.sysu.edu.cn
zhengyh57@mail2.sysu.edu.cn

2 School of Computer Science, Fudan University
Shanghai 200438, P.R.China
wzwang23@m.fudan.edu.cn

3 Guangdong Key Laboratory of Information Security,
Guangzhou 510006, P.R. China

4 State Key Laboratory of Information Security (Institute of Information
Engineering), Chinese Academy of Science,

Beijing 100093, P.R.China

Abstract. In the implementation of isogeny-based schemes, Vélu’s for-
mulas are essential for constructing and evaluating odd degree isogenies.
Bernstein et al. proposed an approach known as

√
élu, which computes

an ℓ-isogeny at a cost of Õ(
√
ℓ) finite field operations. This paper presents

two key improvements to enhance the efficiency of the implementation
of
√

élu from two aspects: optimizing the partition involved in
√

élu and
speeding up the computations of the sums of products used in polyno-
mial multiplications over finite field Fp with large prime characteristic
p. To optimize the partition, we adjust it to enhance the utilization of
x-coordinates and eliminate the computational redundancy, which can
ultimately reduce the number of Fp-multiplications. The speedup of the
sums of products is to employ two techniques: lazy reduction (abbrevi-
ated as LZYR) and generalized interleaved Montgomery multiplication
(abbreviated as INTL). These techniques aim to minimize the underly-
ing operations such as Fp-reductions and assembly memory instructions.
We present an optimized C and assembly code implementation of

√
élu

for the CTIDH512 instantiation. In terms of ℓ-isogeny computations in
CTIDH512, the performance of clock cycles applying new partition +
INTL (resp. new partition + LZYR) offers an improvement up to 16.05%
(resp. 10.96%) compared to the previous work.

Keywords: isogeny-based cryptography
√

élu formulae partition

1 Introduction

Isogeny-based post-quantum scheme was first proposed in 2006 by Couveignes,
Rostovtsev and Stolbunov in [19,45] (CRS scheme). The security of this system

2 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

is based on the difficulty of computing isogenies between ordinary curves defined
over a finite field. Since then, isogeny-based cryptography has gained increasing
attention from cryptographers.

The CRS scheme faces bottlenecks in terms of efficiency and security. Childs
et al. showed that the private key of CRS could be recovered in subexponential
time on a quantum computer [15]. In 2011, the Supersingular Isogeny-based
Diffie-Hellman key exchange protocol (SIDH) was presented by Jao and De
Feo in [31]. This protocol is more efficient than CRS. In 2014, a supersingu-
lar isogeny key encapsulation scheme (SIKE) based on SIDH was proposed [9].
SIKE was submitted to the NIST post-quantum cryptography standardization
project (https://www.nist.gov/) in 2017, and passed to the round 4 of this
contest as an alternative candidate in 2021.

However, more recently Castryck and Decru presented an efficient key recov-
ery attack on SIDH [12]. Maino et al. [36] provided a subexponential algorithm to
break SIDH with arbitrary starting curves. Inspired by these works, Robert [44]
presented a deterministic polynomial time attack on SIDH in all cases. All of
these attacks can also be applied to Séta [24] and B-SIDH [16].

Fortunately the above attacks do not extend to CSIDH, a commutative class
group action protocol proposed by Castryck et al. in 2018 [13]. CSIDH is another
isogeny-based key exchange protocol based on the CRS scheme, operating with
supersingular curves. Compared with CRS and its variant presented by Kieffer et
al. in [33], CSIDH is significantly faster. Banegas et al. presented a constant-time
implementation of CSIDH named CTIDH [3] in 2021, which is the most efficient
constant-time variant of CSIDH. Nevertheless, CSIDH/CTIDH also suffers from
a subexponential-time attack on quantum computers since the endomorphism
ring over Fp is commutative. Therefore, several works suggest that CSIDH should
work with larger parameters to reach the NIST security level [8,43,14]. This
means that CSIDH needs to involve the constructions and evaluations of larger
degree isogenies, which are the most expensive computational tasks.

These key exchange protocols can be used to construct digital signatures.
Until now the two kinds of signatures: CSIDH-based [21,7,2,25] and quaternion-
based [27,22,23,20] are not vulnerable to the Castryck-Decru-Maino-Martindale-
Robert attacks [12,36,44] since they do not reveal the torsion point information.
Both of them involve the constructions and evaluations of large degree isogenies.
Additionally, an isogeny-based public key encryption (PKE) named FESTA [5]
was proposed by Basso et al. in 2023, whose encryption process also requires
large degree isogeny computations. Based on the above, the computations of
large degree isogeny are the fundamental operations in the majority of isogeny-
based schemes.

Denote an isogeny of odd degree ℓ by ℓ-isogeny. Vélu’s formulas [48] have
been widely used to construct and evaluate ℓ-isogenies. In recent years, there
are several works focusing on optimizing the constructions and evaluations of
ℓ-isogenies via Vélu’s formulas [17,18,37,30,4]. They use the other coordinates
besides Montgomery models such as Edwards coordinates to speed up the fi-
nite field arithmetic, or apply the technique of addition chains to optimize the

https://www.nist.gov/

Efficient Implementation of
√

élu’s Formulas 3

computations of scalar multiplications involved in isogeny computations. These
optimizations obtain a cost of Õ(ℓ) field operations.

Bernstein et al. presented a new technique to construct and evaluate ℓ-
isogenies at a cost of about Õ(

√
ℓ) field operations in 2020 [6]. This approach

was achieved by observing that the evaluations of polynomial products can be
efficiently done via the baby-step giant-step algorithm. Due to its square root
complexity, this variant of Vélu’s formulas is named as square-root Vélu’s for-
mulas, or simply

√
élu. The experimental tuning results in [6] demonstrate that√

élu performs better for ℓ ≥ 83. Adj et al. presented a more concrete computa-
tional analysis of

√
élu and employed novel techniques to reduce the polynomial

multiplications [1] when performing the evaluations of ℓ-isogenies.
Consequently, several works have focused on developing more efficient square-

root Vélu’s formulas of ℓ-isogenies on other supersingular elliptic curve models
beyond Montgomery curves. In 2019, Moriya et al. performed CSIDH on Ed-
wards curves [42], utilizing the w-coordinate for ℓ-isogeny constructions and
evaluations. Following the proposal of

√
élu, they applied it to their new ap-

proach and implementation and achieved further optimization [41]. More recent
works include constructions and evaluations of ℓ-isogenies on Huff curves [34],
Twisted Jacobi quartic curves [28] [29] and Twisted Hessian curves [47].

Our Contributions. We speed up the implementation of
√

élu from two per-
spectives: optimizing the partition required in

√
élu to reduce the number of

multiplications over finite fields and saving the underlying finite field arithmetic
involved in the polynomial multiplications. Let Fp be a finite field with p elements
in the rest of this paper, where p is an odd prime.

For the previous partition S = (I±J)∪K [6] required in the process of
√

élu,
the set I is completely not included in S which may bring some computational
redundancy. Inspired by this, we modify the above partition and rewrite S by S̃
to make the new set Ĩ included in S̃. This adjustment can enhance the utilization
of the set of x-coordinates and share more computations of scalar multiplications,
which can reduce the number of Fp-multiplications.

Inspired by Bernstein et al.’s suggestion in Appendix A.5 of [6], we consider
lazy reduction [46] and generalized Montgomery multiplication [35] to speed
up
√

élu by reducing the Fp-modular reductions and the underlying memory
instructions respectively in concrete implementation.

Based on the code of [3] (https://ctidh.isogeny.org/) and [35], we imple-
ment

√
élu on CTIDH512 instantiation using our improvements. More precisely,

our main contributions are summarized as follows:

1. Our new partition saves the Fp-multiplications by up to 5.64% compared
with the previous implementation of CTIDH512 when computing large ℓ-
isogenies. Moreover, it can effectively expand the utilization of

√
élu in

isogeny-based cryptosystems.
2. We combine the new partition with lazy reduction to speed up the com-

putation of large ℓ-isogenies over Fp. The experimental results of clock cy-
cles (resp. multiplication instructions) for computing large ℓ-isogenies indi-

https://ctidh.isogeny.org/

4 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

cate a reduction of up to 10.96% (resp. 15.75%) compared to the previous
work [3,6].

3. We compute the sums of products used in polynomial multiplications over Fp

by applying generalized interleaved multiplication and combine it with our
new partition. This approach leads to a speedup in ℓ-isogeny computations,
reducing the number of memory instructions by up to about 24.25% (ℓ =
347). The performing results for computing large degree ℓ-isogenies show
a clock cycle saving of up to 16.05% (ℓ = 137) compared to the previous
work [3,6].

Our code is included in the supplementary material.

Outline. The remainder of this paper is organized as follows. In Section 2, we
give a brief overview of traditional Vélu’s formulas and

√
élu. We also provide

an introduction of Montgomery multiplication and lazy reduction. Section 3
presents the approaches to speed up the computation of large degree ℓ-isogenies.
In Section 4, we compare the experimental results of the cost of computing ℓ-
isogenies on CTIDH512 utilizing our methods with the previous work. Finally,
our conclusion and future work are drawn in Section 5.

Notations. Denote the Fp-multiplications and Fp-squares by M and S, respec-
tively.

2 Preliminaries

In this section, we introduce the corresponding mathematical preliminaries used
in our methods, including isogeny formulas, Montgomery multiplications, and
lazy reduction.

2.1 Vélu’s Formulas

Let E and E′ be two elliptic curves defined over Fp. An isogeny φ : E →
E′ defined over Fp can be regarded as a non-constant group homomorphism
from E(Fp) to E′(Fp) such that φ(OE) = OE′ , where OE (resp. OE′) denotes
the point at infinity on E (resp. E′). The degree of φ is its degree as a group
homomorphism, denoted by deg(φ). The kernel of φ is a finite subgroup G ⊂
E(Fp) such that φ(G) = {OE}, and we name it ker(φ). For separable isogenies,
the equality deg(φ) = #ker(φ) always holds [31]. Concrete formulas of φ were
first given by Vélu [48,26].

A Montgomery curve [39] is an elliptic curve defined through the following
equation:

EA/Fp : y2 = x3 +Ax2 + x,

where A ∈ Fp \ {±2}. The Montgomery model is preferred in isogeny-based
cryptosystems due to its efficient arithmetic.

Efficient Implementation of
√

élu’s Formulas 5

Vélu’s Formulas on Montgomery curves. Costello and Hisil proposed the
odd-degree isogenies (Vélu’s) formulas on Montgomery curves using x-coordinates
[17]. The computations include the evaluations of the image point Q′ = φ(Q)
and the codomain curve coefficient A′.

Theorem 1. For a finite field Fp, let ℓ and s be two integers satisfying ℓ = 2s+1,
where ℓ is odd. Let P ∈ EA(Fp) be a point of order ℓ on the Montgomery curve
EA/Fp : y2 = x3 + Ax2 + x, and write σ =

∑s
i=1 x[i]P , σ̃ =

∑s
i=1

1
x[i]P

and
π =

∏s
i=1 x[i]P . The curve

EA′/Fp : y2 = x3 +A′x2 + x

with
A′ = π2 · (6σ̃ − 6σ +A)

is the codomain of ℓ-isogeny φ : EA → EA′ with Ker(φ) = 〈P 〉, which is defined
by the rational map:

φ : x 7→ f(x),

where

f(x) = x ·
s∏

i=1

(
xx[i]P − 1

x− x[i]P

)2

. (1)

The Costello-Hisil algorithm [17] is the state-of-the-art for evaluating relatively
small odd degree isogenies on Montgomery models. However, for larger degree
ℓ-isogenies, there exists a more effective algorithm. We will describe it in the
next subsection.

2.2
√

élu’s Formulas

Bernstein et al. first proposed a baby-step giant-step like method which is named√
élu for computing large degree isogenies [6]. In the following, we state the

computation process of
√

élu in detail.
From Theorem 1, the x-coordinate of φ(Q) can be represented as

xφ(Q) = xℓ ·
s∏

i=1

(
x[i]P − 1/x

x− x[i]P

)2

.

Let hS(x) =
∏

i∈S(x − x[i]P). Then xφ(Q) can be expressed as a function of
hS(x) :

xφ(Q) = xℓ ·
∏
i∈S

(
hS(1/x)

hS(x)

)2

where S = {1, 3, · · · , ℓ− 2}.

6 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

The formulas from Theorem 1 give an approach to computing the codomain
coefficient A′. Another approach is pointed out in [37]. One can transform it to
twisted Edwards form and use the formulas in [40] to obtain A′ = 2 · 1+d

1−d where

d =

(
A− 2

A+ 2

)ℓ (
hS(1)

hS(−1)

)8

.

Note that both evaluating isogenies and computing codomain curves require
the evaluation of hS(x). A straightforward approach is to perform Õ(#S) Fp-
operations by enumerating the points in S. Alternatively, Bernstein et al. pro-
posed a strategy to efficiently evaluate hS(x) and obtained a square root com-
plexity speedup over the Costello-Hisil algorithm [17]. For our purpose, we
present the following lemma in [11] to illustrate the relationship between xP , xQ,
xP+Q and xP−Q.
Lemma 1. Let E/Fp be an elliptic curve. There exist biquadratic polynomials
F0, F1 and F2 in Fp[x1, x2] such that

(x− xP+Q)(x− xP−Q) = x2 +
F1(xP , xQ)

F0(xP , xQ)
x+

F2(xP , xQ)

F0(xP , xQ)

for all P and Q in E such that OE /∈ {P,Q, P +Q,P −Q}.
Consider the set S = {1, 3, · · · , ℓ − 2}. Let I = {2b + 4bi | 0 ≤ i < b′} and

J = {2j + 1 | 0 ≤ j < b} where b = b
√
ℓ−1
2 c, b′ = b ℓ−1

4b c if b > 0, and b′ = 0 if
b = 0. Then we have S = (I ± J)∪K such that hS(x) = h(I±J)∪K(x) where the
set K = {4bb′+1, · · · , ℓ−4, ℓ−2}. We can represent most elements of S through
(I + J)∪ (I − J) = I ± J and make sure I + J , I − J are disjoint. Consequently,
we need to determine the sets of x-coordinates: xI = {x([i]P) | i ∈ I}, xJ =
{x([j]P) | j ∈ J} and xK = {x([k]P) | k ∈ K} using the partition mentioned
above while evaluating hS(x). Finally, we apply Lemma 1 to express hI±J(x) as
a resultant of two polynomials of smaller size:

hI±J(x) =
∏

(i,j)∈I×J

(x− x[i+j]P)(x− x[i−j]P)

=
Resz(hI(z), EJ(x, z))

Resz(hI(z), DJ(z))

where

EJ(x, z) =
∏
j∈J

(F0(z, x[j]P)x
2 + F1(z, x[j]P)x+ F2(z, x[j]P))

and DJ(z) =
∏

j∈J F0(z, x[j]P).
By using the above techniques, the computational cost of performing an ℓ-

isogeny has been reduced from Õ(ℓ) to Õ(
√
ℓ). Specifically, Adj et al. [1] showed

that the best algorithm for the polynomial multiplications inherent in
√

élu
is to apply Karatsuba’s method, then the complexity becomes approximately
Õ(k(

√
ℓ)log2 3) where k is a constant. Due to the constant k,

√
élu’s formulas

perform better only when the prime degree ℓ is large.

Efficient Implementation of
√

élu’s Formulas 7

2.3 Montgomery multiplication and lazy reduction

A widely-used method known as Montgomery multiplication was proposed by
Montgomery in [38]. This method speeds up the modular multiplication by re-
placing long divisions by simple divisions with powers of 2.

To apply the Montgomery multiplication, all of Fp-elements are represented
in the Montgomery domain [38]. Let R = 2N , and p′ = −p−1 mod R, where
N = nw, n = d l

w e, l = dlog2 pe, the value w is the computer wordsize. Since we
implement the modular multiplication on the x64 platform, we set w = 64. For
two Fp-elements a and b, their Montgomery representations are given by ã = aR

mod p and b̃ = bR mod p, respectively. If it holds that ãb̃ < pR, the p-residue
c = ãb̃R−1 mod p can be computed as

c = (ãb̃+ ((ãb̃ mod R)p′ mod R)p)/R. (2)

Since it satisfies: 0 ≤ c < pR+pR
R = 2p, we need to execute a modular correction

to ensure that c lies within the range [0, p− 1]. Finally the result ab mod p can
be easily computed by dividing c by the value R.

Let {a0, a1, · · · , at−1} and {b0, b1, · · · , bt−1} be two sets of elements in Fp.
The computations of the sums of products: [35] c =

∑t−1
i=0 ±aibi mod p can be

found at the core of many cryptologic computations, such as pairing and isogeny
computations.

In practice, the technique of lazy reduction is widely used to optimize
the implementation of computing the sums of products c. Instead of performing
each modular multiplication aibi mod p separately, we first compute the sum of
unreduced integer products

∑n
i=1 aibi, and finally perform the modular reduction

c =
∑n

i=1 aibi mod p. This approach can significantly reduce the number of Fp-
modular reductions.

3 Main Results

In this section, we present our main optimizations to the implementation of√
élu. Using the same notation as above, let P be a point of order ℓ. We modify

the partition of sets I, J,K which can reduce the number of Fp-multiplications in
the computations of xI, xJ and xK. Moreover, since it needs to perform poly-
nomial multiplications when dealing with hI(z), EJ(x, z) and their resultant
Resz(hI(z), EJ(x, z)) [6], we accelerate the computations of the sums of prod-
ucts over Fp which are widely used in polynomial multiplications by applying
lazy reduction and generalized interleaved Montgomery multiplication [35].

3.1 Modifying the partition

From Section 2.2, the computation of xI = {x([i]P) | i ∈ I}, xJ = {x([j]P) | j ∈
J} and xK = {x([k]P) | k ∈ K} is a crucial part of the evaluation of hS(x) on√

élu. In the previous partition [6], the set I is not included in S which may
lead to some additional computations of scalar multiplications. Inspired by this,

8 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

we redefine the set S as S̃ = {2, 4, · · · , ℓ − 1} to make all the elements in S̃
be even. By the properties of x-coordinates on Montgomery curves we have
hS(x) = hS̃(x). We modify the partition of I, J, K as follows:

Ĩ = {2b̃+ 2 + i(4b̃+ 2)| i = 0, 1, · · · , b̃′ − 1}
J̃ = {2j + 2| j = 0, 1, · · · , b̃− 1}
K̃ = {4b̃b̃′ + 2b̃′ + 2, 4b̃b̃′ + 2b̃′ + 4, · · · , ℓ− 1}

where b̃ = b
√
ℓ−1
2 c and b̃′ = b ℓ−1

4b̃+2
c are the sizes of the sets J̃ and Ĩ, respectively.

It can be verified that the set Ĩ ± J̃ = (Ĩ + J̃) ∪ (Ĩ − J̃) is a disjoint union as
before. Let i0 be an arbitrary element in Ĩ, we have:

2 ≤ 2b̃+ 2 ≤ i0 ≤ 4b̃b̃′ + 2b̃′ − 2b̃ < ℓ− 1

Due to the arbitrariness of i0, Ĩ is completely contained in S̃. Consequently, S̃
can be expressed as: S̃ = (Ĩ ± J̃) ∪ Ĩ ∪ K̃. The evaluation formula of hS̃(x) can
be represented as:

hS̃(x) = hĨ(x)hK̃(x) ·Resz(hĨ(z), EJ̃(z, xj)).

After the above adjustment, the set Ĩ plays the same role as K̃ which can
improve the utilization of the x-coordinates during the evaluation of hS̃(x). In
the following, we state how this modification impacts the computational cost.

In practice, we do not fix b = b
√
ℓ−1
2 c (resp. b̃ = b

√
ℓ−1
2 c) and b′ = b ℓ−1

4b c
(resp. b̃′ = b ℓ−1

4b̃+2
c) since the corresponding partition may not be optimal. We

use a tuning program mentioned in [6] to identify the unique (b, b′) (resp. (b̃, b̃′))
which achieves the highest efficiency by looping through the values b and b′ (resp.
b̃ and b̃′), calculating and comparing the computational cost (Fp-multiplication)
of performing an ℓ-isogeny using the corresponding partition. The following theo-
rem highlights that if the tuning results of the previous partition verify a specific
condition, we can always save several Fp-multiplications.

Theorem 2. Let S̃ = (Ĩ ± J̃) ∪ Ĩ ∪ K̃ be our partition mentioned above. Let
S = (I±J)∪K be the previous partition in [6]. If the tuning results of the previous
partition satisfies #K ≥ #I, we can save a certain amount of Fp-multiplications
using our partition after tuning when computing an ℓ-isogeny.

Proof. We fix b̃ = b and b̃′ = b′ for our partition after obtaining the optimal
(b, b′) for the previous partition in [6]. The size of K is: #K = ℓ−1

2 − 2bb′. If it
satisfies #K ≥ #I, we have:

#K̃ =
ℓ− 1

2
− b̃′(2b̃+ 1) = #K −#I ≥ 0.

Thus we can derive a relationship between #K and #K̃:

#K −#K̃ = #I = #Ĩ .

Efficient Implementation of
√

élu’s Formulas 9

Therefore, we can save #Ĩ scalar multiplication computations compared with
the previous partition when computing the sets of x-coordinates xĨ, xJ̃ and
xK̃.

Furthermore, the tuple (b̃, b̃′) = (b, b′) may not correspond to the optimal
partition for our situation. We can reduce more Fp-multiplications by taking the
tuning result (b̃, b̃′) with respect to our optimal partition.

Remark 1. Note that the tuning program counts the whole Fp-multiplications for
an ℓ-isogeny computation, including the evaluation of the resultant . Therefore,
the cost we save does not depend only on the computations of xI, xJ and xK.
We may also save some Fp-multiplications although the condition #K ≥ #I is
not verified.

We can share some computations of scalar multiplications when computing
xI, xJ and xK (resp. xĨ, xJ̃ and xK̃). Now we propose an example below
for illustration. We take the odd prime ℓ = 191, and the tuning result of the
191-isogeny using the previous partition corresponds to the tuple (b, b′) = (7, 6).
Thus the size of K is ℓ−1

2 − 2bb′ = 11, which satisfies the condition #K ≥ #I
as stated in Theorem 2.

Example 1. Consider the odd prime ℓ = 191. Using the previous partition, we
have:

I = {14, 42, · · · , 154}, J = {1, 3, · · · , 13},
K = {169, 171, · · · , 189}.

The set xK can be represented as:

xK = {x([2]P), x([4]P), · · · , x([22]P)}.

And it takes a point doubling and six differential additions to obtain xJ and
xK[0]. After obtaining xJ , the elements: xK[2i], i = 1, · · · , 5 can be directly
doubled from xJ [i], i = 1, · · · , 5, respectively. In addition, we can execute five
point doublings to compute the remaining elements of xK except for xK[0].
Hence it takes ten point doublings to obtain xK. Finally we deal with xI. The
first element xI[0] has been computed in xK, and the addition step can be
obtained by doubling it. Therefore, the cost of computing xI includes five dif-
ferential additions and a point doubling.

For Montgomery model, a differential addition and a doubling need 4M +
2S and 4M + 2C, respectively [9]. The notation C represents multiplication
of an element of Fp by a constant of Fp. Since we need to execute a chain of
ℓ-isogenies on CTIDH, the two constants in Fp that need to be multiplied are
not fixed. Thus C can be roughly regarded as M. For simplicity we take M =
S, then the total computational cost of xI, xJ and xK becomes 138M.

Take (b̃, b̃′) = (b, b′) = (7, 6) for our partition, we have:

Ĩ = {16, 46, · · · , 166}, J̃ = {2, 4, · · · , 14},
K̃ = {182, 184, · · · , 190}.

10 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

In this case xK̃ = {x(P), x([3]P), · · · , x([9]P)}. Similarly, it takes four differ-
ential additions and a point doubling to obtain xK̃ and xJ̃ [0]. Then the ele-
ments: xJ̃ [2], xJ̃ [4] and xJ̃ [6] can be doubled from xK̃[1], xK̃[2] and xK̃[3],
respectively. The remaining elements except for xJ̃ [0] in xJ̃ can be obtained by
performing three point doublings. Finally the first element xĨ[0] can be doubled
from xJ̃ [3]. The addition step of xĨ can be obtained by adding the first element
of xĨ and the last element of xJ̃ . Thus it takes six differential additions and a
point doubling to obtain xĨ. The total computational cost is 108M. We can save
30M compared with the partition in [6] when computing xĨ, xJ̃ and xK̃. From
Theorem 2, the tuple (b̃, b̃′) = (7, 6) may not correspond to the optimal parti-
tion. Therefore we can reduce at least 30 Fp-multiplications using our partition
when computing the 191-isogeny.

On the basis of the above analysis, sharing the computations of scalar multipli-
cations as far as possible can also reduce the cost of Fp-multiplications. In our
current partition, the intersection of xJ̃ and xK̃ is empty. In other words, the
shared computations between xK̃ and xJ̃ are limited which may also bring some
computational redundancy if #K̃ is large. To avoid this, we still need to make
an adjustment.

By exploiting the symmetry of the points in 〈P 〉, we can rewrite the set S as
S̃ = {1, 2, · · · , ℓ−1

2 } and modify the partition of I, J,K as follows:

Ĩ = {ℓ− 1

2
− b̃′(2b̃+ 1) + b̃+ 1 + i(2b̃+ 1)| i = 0, 1, · · · , b̃′ − 1},

and

J̃ ={j + 1| j = 0, 1, · · · , b̃− 1},

K̃ ={1, 2, · · · , ℓ− 1

2
− b̃′(2b̃+ 1)}

where b̃ and b̃′ are the sizes of the sets J̃ and Ĩ, respectively. Similarly to our
first partition, we also have hS(x) = hS̃(x) and the set Ĩ ± J̃ = (Ĩ + J̃)∪ (Ĩ − J̃)

is a disjoint union. Let i0 be an element of Ĩ, according to the above adjustment
we have

1 ≤ ℓ− 1

2
− 2b̃b̃′ − b̃′ + b̃+ 1 ≤ i0 ≤

ℓ− 1

2

which implies that the set Ĩ is completely included in S̃. Hence, the evaluation
formula of hS̃(x) can also be rewritten as:

hS̃(x) = hĨ(x)hK̃(x) ·Resz(hĨ(z), EJ̃(z, xj)).

By applying the new partition above, the sets xĨ, xJ̃ and xK̃ fulfill the
condition: xJ̃ ∩ xK̃ 6= ∅ and Ĩ ⊂ S̃. Therefore, we can share more computations
of scalar multiplications compared with our initial partition when computing
xĨ, xJ̃ and xK̃. Besides, we can determine the first element of xĨ by adding
the last element of xK̃ with the point [b̃+1]P using x-only differential addition

Efficient Implementation of
√

élu’s Formulas 11

after computing xJ̃ and xK̃ and the addition step of xĨ can be obtained by
executing: [2b̃ + 1]P ← [b̃ + 1]P + [b̃]P . Algorithm 1 shows the computational
procedure of xĨ, xJ̃ and xK̃. We only consider the case #J̃ > #K̃, to which
the procedures of the other cases are similar.

Algorithm 1 Computing the sets of x-coordinates according to the new parti-
tion.
Input: The kernel of the ℓ-isogeny φ : ⟨P ⟩. Positive integers (b̃, b̃′) which are the sizes

of Ĩ and J̃ , respectively. The partition J̃ , Ĩ and K̃ which satisfies #J̃ > #K̃.
Output: The sets of x-coordinates xĨ, xJ̃ and xK̃.
1: x2P ← xDBL(xP), xJ̃ [0] ← xP , xJ̃ [1] ← x2P , i← 2
2: while i < b̃ do
3: xJ̃ [i] ← xADD(xJ̃ [i− 1], xP, xJ̃ [i− 2])
4: xJ̃ [i+ 1] ← xDBL(xJ̃ [⌊i/2⌋])
5: i← i+ 2
6: end while
7: if b̃ % 2 == 0 then
8: xJ̃ [b̃] ← xADD(xJ̃ [b̃− 1], xP, xJ̃ [b̃− 2])
9: end if

10: for i from 0 to ℓ−1
2
− b̃′(2b̃+ 1)− 1 do

11: xK̃[i]← xJ̃ [i]
12: end for
13: xĨ[0]← xADD(xJ̃ [b̃], xJ̃ [ℓ−1

2
− b̃′(2b̃+ 1)− 1], xJ̃ [b̃+ 1− ℓ−1

2
+ b̃′(2b̃+ 1)])

14: Istep← xADD(xJ̃ [b̃], xJ̃ [b̃− 1], xP)
15: xĨ[1]← xADD(Istep, xĨ[0], xJ̃ [b̃− ℓ−1

2
+ b̃′(2bb̃+ 1)])

16: for i from 2 to b̃′ − 1 do
17: xĨ[i]← xADD(xĨ[i− 1], Istep, xĨ[i− 2])
18: end for
19: return (xĨ, xJ̃, xK̃)

In Algorithm 1, the function xADD(xP , xQ, xP−Q) represents the x-only
differential addition on Montgomery curves. The output of xADD is the x-
coordinate of P +Q. The function xDBL(xP) returns the x-coordinate of [2]P .

We continue to take ℓ = 191 and use the partition with respect to the tuple
(b̃, b̃′) = (7, 6) for our new partition. We obtain that:

Ĩ = {13, 28, · · · , 88}, J̃ = {1, 2, · · · , 7}, K̃ = {1, 2, · · · , 5}.

According to Algorithm 1, it takes three differential additions and three point
doublings to obtain xJ̃ . After computing xJ̃ , we need to perform one more
differential addition to obtain x([8]P) which is used to compute the addition
step of xĨ. Observing that K̃ is completely included in J̃ , we do not need to
redundantly compute xK̃. Finally, the first element of xĨ can be obtained by
xĨ[0] = xJ̃ [5] + xJ̃ [6] and the addition step of xĨ can be obtained by adding
xJ̃ [6] and x([8]P). Thus, it needs seven differential additions to obtain xĨ. The

12 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

total computational cost is 84M. We can save 54M and 24M compared with the
partition in [6] and our first partition respectively, when computing xĨ, xJ̃ and
xK̃. In conclusion, we consider the latter partition for implementation.

3.2 Optimizing the implementation of polynomial multiplications

In this subsection, we use the techniques of lazy reduction and generalized inter-
leaved Montgomery multiplication [35] to speed up the computations of polyno-
mial multiplications involved in evaluating ℓ-isogenies by improving the imple-
mentations of the sums of products.

Let A(x) =
∑m

i=1 aix
i and B(x) =

∑n
j=1 bjx

j ∈ Fp[x] be two polynomials of
degree m and n. Let C(x) = A(x)B(x) =

∑m+n
k=1 ckx

k be the product of A(x)
and B(x). The Karatsuba multiplication [32] is done by dividing the polynomials
A(x) (resp. B(x)) into two parts: A0 + A1x

⌈m
2 ⌉ (resp. B0 + B1x

⌈n
2 ⌉) and then

using the equation: A0B1+A1B0 = (A0+A1)(B0+B1)−A0B0−A1B1 to obtain
A0B1 +A1B0. Recurse the procedures above and recombine the coefficients, we
finally obtain the product C(x).

After repeatedly recursing the polynomials A(x) and B(x), we only need to
deal with the product of two small polynomials in the final step. Let m×n rep-
resents the product of two polynomials of degrees m and n. Let (a0, a1, · · · , am)
represents a degree-m polynomial A with coefficients ai, i = 0, · · · ,m. Now we
focus on the three products: 2× 1 , 3× 1 and 2× 2 which are recursed down
from the starting product C. Note that the sums of products

∑1
i=0 aibi and∑2

i=0 aibi are required when constructing the above small products. In the cur-
rent implementation of CTIDH, the technique of lazy reduction or generalized
interleaved Montgomery multiplication has not yet been utilized to optimize the
computation of the sums of products.

The "low", "middle" and "high" products of two polynomials can also be
obtained by combining the Karatsuba multiplication with lazy reduction or gen-
eralized interleaved Montgomery multiplication like the general products.

Using lazy reduction. In the following, we explore how to combine lazy reduc-
tion and the Karatsuba multiplication [32] when performing the small products
mentioned above in the last step of polynomial multiplications over Fp.

Algorithm 2 illustrates the computational procedure of product 2× 1 using
the Karatsuba multiplication and lazy reduction. The functions fp-mul(a, b) and
fp-rdcn(a) are the integer multiplication and Fp-reduction, respectively.

From Algorithm 2 we can see that it takes five integer multiplications and
four Fp-reductions to obtain the product using lazy reduction. If not, we have
to perform five Fp- multiplications. This is equal to a saving of one modular
reduction each time we compute 2 × 1. The situations of the products 3 × 1
and 2× 2 are similar to 2× 1 thus we omit them for simplicity.

Using generalized interleaved Montgomery multiplication. Now we ap-
ply the generalized interleaved Montgomery multiplication [35] to speed up the
computations of the sums of products

∑t
i=0 aibi.

Efficient Implementation of
√

élu’s Formulas 13

Algorithm 2 Product 2× 1 : utilizing the Karatsuba multiplication and lazy
reduction.
Input: A degree-2 polynomial A = (a0, a1, a2) and a degree-1 polynomial B = (b0, b1).
Output: The product C = A ∗B = (c0, c1, c2, c3).
1: c0 ← fp-muln(a0, b0) = a0b0
2: tmp1 ← fp-muln(a0 + a1, b0 + b1) = (a0 + a1)(b0 + b1)
3: tmp2 ← fp-muln(a1, b1) = a1b1
4: c1 ← tmp1 − tmp2 − c0 = a0b1 + a1b0
5: c2 ← fp-muln(a2, b0) + tmp2 = a2b0 + a1b1
6: c3 ← fp-muln(a2, b1) = a2b1
7: for i from 0 to 3 do
8: ci ← fp-rdcn(ci, ci) = ciR

−1 mod p
9: end for

10: return C ← (c0, c1, c2, c3)

We first recall the Montgomery multiplication and use the same notations as
in Sec. 2.3. A straight implementation of Equation 2 requires the use of a huge
number of GPRs (general purpose registers). Another approach which processes
the recovery of one digit at a time by reducing with r = 2w at each iteration can
balance the use of GPRs. It is called radix-r interleaved Montgomery multipli-
cation [35].

The method above can be easily generalized to the sums of products [35],
which is called generalized Montgomery multiplication. Algorithm 3 illustrates
the computational procedure of 2 × 2 . Let fp-mul(a, b), fp-sum2(a, b) and
fp-sum3(a, b) be functions that compute abR−1 mod p,

∑1
i=0 aibi · R−1 and∑2

i=0 aibi · R−1 utilizing (generalized) interleaved Montgomery multiplication,
respectively.

Algorithm 3 Case 2 × 2: computing the sums of products using interleaved
Montgomery multiplications
Input: A degree-2 polynomial A = (a0, a1, a2) and a degree-1 polynomial B = (b0, b1).
Output: The product C = A ∗B = (c0, c1, c2, c3, c4).
1: c0 ← fp-mul(a0, b0) = a0b0R

−1 mod p
2: c1 ← fp-sum2(a0, a1, b1, b0) = (a0b1 + a1b0)R

−1 mod p
3: c2 ← fp-sum3(a0, a1, a2, b2, b1, b0) = (a0b2 + a1b1 + a2b0)R

−1 mod p
4: c3 ← fp-sum2(a1, a2, b2, b1) = (a1b2 + a2b1)R

−1 mod p
5: c4 ← fp-mul(a2, b2) = a2b2R

−1 mod p
6: return C ← (c0, c1, c2, c3, c4)

Although using generalized interleaved Montgomery multiplication requires
more Fp-modular reductions and multiplications to perform than using lazy re-
duction, the great balance between the intermediate results and GPRs ensures
the crucial savings of the use of memory. It is a trade-off between the underlying

14 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

instructions of multiplications and memory reads/writes. Note that Algorithm 3
directly calculates the sums of products modulo p which is incompatible with the
procedures of lazy reduction. Hence we cannot combine the above two techniques
together.

4 Cost analysis and implementation on large degree
isogenies

In this section, we first compare the computational cost (Fp multiplication) be-
tween applying the previous partition in [6] and ours. The numbers of underlying
instructions using lazy reduction and generalized Montgomery multiplication are
also illustrated. Finally we present the clock cycles required for executing an ℓ-
isogeny in our implementation. The technique of lazy reduction (resp. generalized
Montgomery multiplication) is abbreviated as LZYR (resp. INTL) throughout
the remaining part of this paper.

4.1 Efficiency comparison

From Section 3 we know that in practice the optimal partition is obtained by
tuning the values of (b, b′), which are the cardinalities of J̃ and Ĩ, respectively.
We use a tuning program to obtain the optimal partition for each ℓ-isogeny in
CTIDH512. Figure 1 illustrates the cost associated with the ℓ-isogenies involved
in CTIDH512, comparing the original partition [6] with ours. The horizontal
and vertical axes represent the degree of isogenies (3 ≤ ℓ ≤ 587) and the Fp-
multiplications divided by the square root of degree, respectively. We reduce
the number of Fp-multiplications for almost all ℓ-isogenies except ℓ = 353 in
CTIDH512 compared to the original partition. Especially for ℓ = 191, the opti-
mization is about 5.64%.

The tuning results also indicate that our partition can enhance the applica-
tion of

√
élu. According to Figure 1 ,

√
élu performs better when ℓ ≥ 83 in the

previous implementation of CTIDH512 [3]. However, by using our new partition,
the condition is relaxed to ℓ ≥ 73.

Figure 2 presents the cost of instructions of multiplications and memory
reads/writes when executing different prime degree ℓ-isogenies, respectively. The
horizontal and vertical axes represent the degree of isogenies (3 ≤ ℓ ≤ 587)
and the number of assembly instructions divided by the square root of degree,
respectively.

The average ratio of the number of multiplication instructions when comput-
ing the following ℓ-isogenies (ℓ > 89) using LZYR to the previous work is 89.3%.
When ℓ = 137, we can achieve the maximum saving of multiplication instruc-
tions at about 15.75%. As for INTL, the average ratio of the number of memory
reads/writes instructions to the previous work is 83.04%. When ℓ = 347, the
saving is up to 24.25%.

Efficient Implementation of
√

élu’s Formulas 15

Fig. 1. Comparison of Fp-multiplications for the ℓ-isogenies required in CTIDH512
between the previous work [6] and our new partition (the result has been tuned). The
x-axis represents the degree of each isogeny.

Fig. 2. Comparison of instruction counts between utilizing LZYR/INTL (Algorithm
2 and Algorithm 3) and the previous work [3] for computing each ℓ-isogeny over Fp.
The x-axis represents the degree of each isogeny.

4.2 Improvement of
√

élu’s Formula on CTIDH512

Based on the code provided in [3], we compile and benchmark our code on
Intel(R) Core(TM) i9-12900K 3.20 GHz with TurboBoost and hyperthreading
features disabled. Compilation was carried out using the command clang -O3.
The version of clang is 11.3.0.

We combine the new partition with LZYR and INTL respectively for imple-
mentation. To make the data more reliable, we executed each ℓ-isogeny which
needs to be computed in CTIDH512 for 1.6 × 103 times and took the average
cycle counts. The performance results of CPU clock cycles for each ℓ-isogeny
are presented in Figure 3. The horizontal and vertical axes represent the degree
of isogenies (3 ≤ ℓ ≤ 587) and CPU clock cycles divided by the square root of
degree, respectively.

Compared with the previous work, when computing the large degree ℓ-
isogenies, the performance of applying our new partition + LZYR is 4.44% −

16 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

Fig. 3. Performance comparison (in terms of clock cycles) between the proposed meth-
ods (Algorithm 1 + Algorithm 2 and Algorithm 1 + Algorithm 3) and the previous
work [3] for computing each ℓ-isogeny over Fp.

10.96% faster than that of the previous work. In the case of utilizing our new
partition + INTL, we reduced the clock cycles by approximately 8.54%−16.05%.

5 Conclusion and Future Work

In this paper, we propose a new partition in the computational process of ℓ-
isogenies to reduce the number of scalar multiplications. At the underlying level,
we also apply two approaches to save the instructions of multiplications and
memory reads/writes, which speed up the polynomial multiplications over fi-
nite field Fp in the process of

√
élu. To a certain extent, they impact the soft-

ware implementation of cryptographic schemes including CSIDH/CTIDH, the
CSIDH-based [21,7,2,25] and the quaternion-based [27,22,23,20] digital signature
schemes. Furthermore, our new partition can also be extended to the public key
encryption FESTA [5] and the key exchange protocol dCSIDH [10].

The future work can involve: finding a more efficient partition or even reduce
the computational complexity of

√
élu, and studying the performance of the

proposed method using school-book forms in combination with the AVX-512
vector instructions available in some Intel processors. Moreover, we aim to adapt
our method for implementations on other software platforms, constrained devices
and hardware platforms.

Acknowledgement

References

1. Adj, G., Chi-Domínguez, J.J., Rodríguez-Henríquez, F.: Karatsuba-based square-
root Vélus formulas applied to two isogeny-based protocols. Journal of Crypto-
graphic Engineering pp. 1–18 (2022)

Efficient Implementation of
√

élu’s Formulas 17

2. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: CSI-SharK: CSI-Fish
withăSharing-friendly Keys. In: Simpson, L., Rezazadeh Baee, M.A. (eds.) Infor-
mation Security and Privacy. pp. 471–502. Springer Nature Switzerland, Cham
(2023)

3. Banegas, G., Bernstein, D.J., Campos, F., Chou, T., Lange, T., Meyer, M., Smith,
B., Sotáková, J.: CTIDH: faster constant-time CSIDH. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2021(4), 351387 (Aug 2021)

4. Banegas, G., Gilchrist, V., Dévéhat, A.L., Smith, B.: Fast andăFrobenius: Rational
Isogeny Evaluation overăFinite Fields. In: Aly, A., Tibouchi, M. (eds.) Progress
in Cryptology – LATINCRYPT 2023. pp. 129–148. Springer Nature Switzerland,
Cham (2023)

5. Basso, A., Maino, L., Pope, G.: FESTA: Fast Encryption fromăSupersingular Tor-
sion Attacks. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology – ASI-
ACRYPT 2023. pp. 98–126. Springer Nature Singapore, Singapore (2023)

6. Bernstein, D.J., de Feo, L., Leroux, A., Smith, B.: Faster computation of isoge-
nies of large prime degree. In: Galbraith, S. (ed.) ANTS-XIV - 14th Algorithmic
Number Theory Symposium. Proceedings of the Fourteenth Algorithmic Number
Theory Symposium (ANTS-XIV), vol. 4, pp. 39–55. Mathematical Sciences Pub-
lishers, Auckland, New Zealand (Jun 2020)

7. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient Isogeny Based
Signatures Through Class Group Computations. In: Galbraith, S.D., Moriai, S.
(eds.) Advances in Cryptology – ASIACRYPT 2019. pp. 227–247. Springer Inter-
national Publishing, Cham (2019)

8. Bonnetain, X., Schrottenloher, A.: Quantum Security Analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020. pp. 493–
522. Springer International Publishing, Cham (2020)

9. Campagna, M., Costello, C., Hess, B., Jalali, A., Koziel, B., LaMacchia, B., Longa,
P., Naehrig, M., Renes, J., Urbanik, D., et al.: Supersingular isogeny key encapsu-
lation (2019)

10. Campos, F., Chavez-Saab, J., Chi-Domínguez, J.J., Meyer, M., Reijnders, K.,
Rodríguez-Henríquez, F., Schwabe, P., Wiggers, T.: Optimizations and practicality
of high-security csidh. Cryptology ePrint Archive, Paper 2023/793 (2023)

11. Cassels, J.W.S.: LMSST: 24 Lectures on Elliptic Curves. London Mathematical
Society Student Texts, Cambridge University Press (1991)

12. Castryck, W., Decru, T.: An Efficient Key Recovery Attack onăSIDH. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 423–447.
Springer Nature Switzerland, Cham (2023)

13. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An Efficient
Post-Quantum Commutative Group Action. In: Peyrin, T., Galbraith, S. (eds.)
Advances in Cryptology – ASIACRYPT 2018. pp. 395–427. Springer International
Publishing, Cham (2018)

14. Chávez-Saab, J., Chi-Domínguez, J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low ex-
ponents. J. Cryptogr. Eng. 12(3), 349–368 (2022)

15. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2014)

16. Costello, C.: B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion.
In: Moriai, S., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2020. pp.
440–463. Springer International Publishing, Cham (2020)

18 Jianming Lin, Weize Wang, Changan Zhao, and Yuhao Zheng

17. Costello, C., Hisil, H.: A Simple and Compact Algorithm for SIDH with Arbi-
trary Degree Isogenies. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology –
ASIACRYPT 2017. pp. 303–329. Springer International Publishing, Cham (2017)

18. Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular Isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 572–601. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

19. Couveignes, J.M.: Hard Homogeneous Spaces. Cryptology ePrint Archive, Paper
2006/291 (2006)

20. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: New Dimensions
in Cryptography. Cryptology ePrint Archive, Paper 2023/436 (2023)

21. De Feo, L., Galbraith, S.D.: SeaSign: Compact Isogeny Signatures from Class
Group Actions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EU-
ROCRYPT 2019. pp. 759–789. Springer International Publishing, Cham (2019)

22. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
Post-quantum Signatures from Quaternions and Isogenies. In: Moriai, S., Wang,
H. (eds.) Advances in Cryptology – ASIACRYPT 2020. pp. 64–93. Springer Inter-
national Publishing, Cham (2020)

23. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New Algorithms
forătheăDeuring Correspondence. In: Hazay, C., Stam, M. (eds.) Advances in Cryp-
tology – EUROCRYPT 2023. pp. 659–690. Springer Nature Switzerland, Cham
(2023)

24. De Feo, L., Delpech de Saint Guilhem, C., Fouotsa, T.B., Kutas, P., Leroux, A.,
Petit, C., Silva, J., Wesolowski, B.: Séta: Supersingular Encryption fromăTorsion
Attacks. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT
2021. pp. 249–278. Springer International Publishing, Cham (2021)

25. Feo, L.D., Fouotsa, T.B., Kutas, P., Leroux, A., Merz, S.P., Panny, L., Wesolowski,
B.: Scallop: Scaling theăcsi-fish. In: Boldyreva, A., Kolesnikov, V. (eds.) Public-
Key Cryptography – PKC 2023. pp. 345–375. Springer Nature Switzerland, Cham
(2023)

26. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, USA, 1st edn. (2012)

27. Galbraith, S.D., Petit, C., Silva, J.: Identification Protocols and Signature Schemes
Based on Supersingular Isogeny Problems. In: Takagi, T., Peyrin, T. (eds.) Ad-
vances in Cryptology – ASIACRYPT 2017. pp. 3–33. Springer International Pub-
lishing, Cham (2017)

28. Hu, Z., Liu, Z., Wang, L., Zhou, Z.: Simplified isogeny formulas on twisted Jacobi
quartic curves. Finite Fields and Their Applications 78, 101981 (2022)

29. Hu, Z., Wang, L., Zhou, Z.: Isogeny Computation onăTwisted Jacobi Intersections.
In: Deng, R., Bao, F., Wang, G., Shen, J., Ryan, M., Meng, m., Wang, D. (eds.)
Information Security Practice and Experience. pp. 46–56. Springer International
Publishing, Cham (2021)

30. Huang, Y., Jin, Y., Hu, Z., Zhang, F.: Optimizing the evaluation of -isogenous
curve for isogeny-based cryptography. Information Processing Letters 178, 106301
(2022)

31. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography.
pp. 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

32. Karatsuba, A.: Multiplication of multidigit numbers on automata. In: Soviet
physics doklady. vol. 7, pp. 595–596 (1963)

Efficient Implementation of
√

élu’s Formulas 19

33. Kieffer, J.: Étude et accélération du protocole déchange de clés de Couveignes–
Rostovtsev–Stolbunov. Ph.D. thesis, Masters thesis, Inria Saclay & Université Paris
VI (2017)

34. Kim, S.: Complete Analysis of Implementing Isogeny-Based Cryptography Using
Huff Form of Elliptic Curves. IEEE Access 9, 154500–154512 (2021)

35. Longa, P.: Efficient Algorithms for Large Prime Characteristic Fields and Their
Application to Bilinear Pairings. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2023(3), 445472 (Jun 2023)

36. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A Direct Key
Recovery Attack onăSIDH. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
– EUROCRYPT 2023. pp. 448–471. Springer Nature Switzerland, Cham (2023)

37. Meyer, M., Reith, S.: A Faster Way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) Progress in Cryptology – INDOCRYPT 2018. pp. 137–152. Springer Inter-
national Publishing, Cham (2018)

38. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation (Apr 1985)

39. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of computation 48(177), 243–264 (1987)

40. Moody, D., Shumow, D.: Analogues of Vélus formulas for isogenies on alternate
models of elliptic curves. Mathematics of Computation 85(300), 1929–1951 (2016)

41. Moriya, T., Onuki, H., Takagi, T.: How to Construct CSIDH on Edwards Curves.
Cryptology ePrint Archive, Paper 2019/843 (2019)

42. Moriya, T., Onuki, H., Takagi, T.: How to Construct CSIDH on Edwards Curves.
In: Jarecki, S. (ed.) Topics in Cryptology – CT-RSA 2020. pp. 512–537. Springer
International Publishing, Cham (2020)

43. Peikert, C.: He Gives C-Sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
Advances in Cryptology – EUROCRYPT 2020. pp. 463–492. Springer International
Publishing, Cham (2020)

44. Robert, D.: Breaking SIDH inăPolynomial Time. In: Hazay, C., Stam, M. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2023. pp. 472–503. Springer Nature Switzer-
land, Cham (2023)

45. Rostovtsev, A., Stolbunov, A.: PUBLIC-KEY CRYPTOSYSTEM BASED ON
ISOGENIES. Cryptology ePrint Archive, Paper 2006/145 (2006)

46. Scott, M.: Implementing cryptographic pairings. In: Proceedings of the First In-
ternational Conference on Pairing-Based Cryptography. p. 177196. Pairing’07,
Springer-Verlag, Berlin, Heidelberg (2007)

47. Tao, Z., Hu, Z., Zhou, Z.: Faster isogeny computation on twisted hessian curves.
Applied Mathematics and Computation 444, 127823 (2023)

48. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273,
305–347 (1971)

	Efficient Implementation of "1270élu's Formulas

