
A Characterization of AE Robustness as
Decryption Leakage Indistinguishability

Ganyuan Caoa

EPFL, Lausanne, Switzerland

Abstract. We introduce a novel notion, denoted as IND-rCCA, to formalize the
security and robustness of authenticated encryption. This notion is an augmentation
of common notions defined for AEAD schemes by considering indistinguishability
of potential leakage due to decryption failure in the presence of multiple checks
for errors. We further extend this notion to IND-sf-rCCA to formalize the stateful
security involving out-of-order ciphertext. Additionally, we present a modification to
the Encode-then-Encrypt-then-MAC (EEM) paradigm to boost its robustness. We
then analyze the security of the modification and show that it satisfies IND-rCCA
security.
Keywords: AE Robustness · Decryption Leakage · IND-rCCA

1 Introduction

1.1 Background and Motivation
Robustness of authenticated encryption has been defined in various ways. The most
commonly accepted definition is with robust authenticated encryption (RAE), a term first
introduced in [HKR15]. We follow the idea of RAE to say that an AEAD scheme is robust
if confidentiality and authenticity are still guaranteed even if a nonce is inadvertently
misused, or if part or all of the plaintext is leaked due to an authenticity-check failure (or
other failures defined by the scheme). Additionally, an AEAD scheme qualifies as an RAE
scheme when users can freely select any expansion factor τ to determine the ciphertext
length relative to the plaintext, and the level of authenticity provided is contingent upon
the chosen τ parameter.

The security of an RAE scheme is initially formalized in sense of a pseudorandom
injection (PRI) in [HKR15]. Nevertheless, PRI formalizes the security in presence of
decryption leakage in a very generalized way. The case where a scheme may involve
multiple checks for errors has not been extensively explored with PRI. There are numerous
attacks exploiting error messages, such as the notable padding oracle attack introduced by
Vaudenay [Vau02], which has been further developed to target SSL/TLS [CHVV03, PRS11],
IPsec [DP07, DP10], and other systems. While adopting a unified error message in the
decryption function for all error types appears promising as a mitigation, there may
still be decryption leakage that grants adversaries an additional advantage. That is
because decryption functions typically reveal plaintext only upon successful completion
of all verification steps, whereas leakage may occur prior to their completion, potentially
exposing partial plaintext and error messages.

Additionally, there has been limited exploration into the stateful security with PRI
for out-of-order ciphertexts. Thus our goal is to introduce a notion that views robustness

E-mail: ganyuan.cao@epfl.ch (Ganyuan Cao)
aThe author is jointly affiliated at EPFL and ETH Zürich

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-04-17.

https://orcid.org/0009-0000-0155-2921
mailto:ganyuan.cao@epfl.ch
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 A Characterization of AE Robustness

of AE as an augmentation from conventional security notions defined for AEAD, such as
IND-CCA3 proposed by Shrimpton in [Shr04], and the combination of semantic security
(IND-CPA) plus ciphertext integrity (INT-CTXT) in [Rog02], allowing for an analysis
that captures stateful security and security in the presence of multiple errors.

Simultaneously, many attempts towards enhancing the robustness of AEAD are to
construct RAE schemes following an enciphering-based approach by using a VIL cipher,
such as AEZ in [HKR15]. This characteristic poses challenges when attempting to boosting
the robustness of generic compositions based on blockcipher modes of operation, such as
Encode-then-Encrypt-then-MAC (EEM), that are more commonly used in practice. Thus
our objective is to revisit the robustness of EEM as a generic composition and propose
minimal modifications to it to boost its robustness.

1.2 Related Work

The security of a RAE scheme was initially formalized in sense of pseudorandom injection
by the indistinguishability from a random injection πN,A,τ such that the oracle returns
M if there exists a plaintext M such that the ciphertext C = πN,A,τ (M), and returns a
plaintext which fails the authenticity check otherwise. RAE formalizes the decryption
leakage in a very generalized way where the cases involving multiple checks for errors
are not studied. That may not be a problem for enciphering-based AE since they always
decipher first and the authenticity check is on the deciphered string. The deciphered string
is usually meaningless if the authenticity check fails. However, for other schemes, leakage
may be meaningful if multiple checks are involved.

One key part of AE robustness is to ensure security even when part of the plaintext
is accidentally leaked. There are several works that introduce notions to formalize the
security under decryption leakage.

In [BDPS14], Boldyreva et al. studied the situation where an encryption scheme
may output multiple errors and focused on the influence of error messages but not the
actual leaked plaintext. They introduced the notion of IND-CVA which gives an IND-CPA
adversary an additional oracle to tell if the queried ciphertext is valid or not. They also
introduced the notion of error invariance (INV-ERR) which requires that no efficient
adversary can generate more than one of the possible error messages. Notably, [BDPS14]
also extended their study to consider the stateful security.

In [ABL+14], Andreeva et al. introduced the notion of release-of-unverified-plaintext
(RUP) and associated it with the ciphertext integrity (INT) notion. Specifically, in
IND-RUP, the decryption algorithm always outputs a bitstring M . The adversary’s goal
is to make the validation function to accept a forged ciphertext given an encryption oracle
and a decryption oracle.

In [BPS15], Barwell et al. introduced the notion of subtle AE (SAE), incorporating
the idea of error indistinguishability (ERR-CCA) alongside IND-CPA and INT-CTXT.
Specifically, ERR-CCA involves a leakage function that outputs the actual leakage. The
security requirement is that an adversary should be unable to distinguish between the
leakage under the same key and different keys. However, we believe that this notion may
not perfectly capture the indistinguishability of leakage and there is a certain overlap with
the integrity notion.

In our notion, we redefine the leakage simulator function, aiming to better separate
it from the integrity notion and focus on the indistinguishability of the leakage itself.
Additionally, our notion can be viewed as a stronger version by comparing the leaked
plaintext with a random bitstring. We particularly consider the case where multiple checks
for errors are involved. Furthermore, we extend this idea to consider stateful security when
out-of-order ciphertexts are present.

Ganyuan Cao 3

1.3 Our Contribution
We introduce a novel notion denoted as IND-rCCA to formalize the robustness of AE.
The IND-rCCA notion extends conventional AE notions, such as IND-CCA3 [Shr04],
by incorporating a leakage simulator function inspired by subtle AE [BPS15]. This
addition captures the leakage when decryption fails. Such security is necessary since the
unintended revelation of plaintext or error flags (implicitly) in memory or cache could offer
an adversaries extra advantage in distinguishing or making forgery, even if the ultimate
result is labeled as a single “decryption failure” by the decryption scheme.

Our notion exhibits better “composability” in terms of notions. We decompose our
notion into IND-CPA plus INT-CTXT and plus a notion for error indistinguishability
(IND-ERR). This enables a standalone analysis of the impact of leakage when a scheme is
known to provide both confidentiality and authenticity.

In our notion, we consider the scenario where there may be multiple possible leaked
plaintexts with multiple checks for errors. We associate the leaked plaintext with the error
flag that it triggers. We require that an adversary should not be able to distinguish the
leaked plaintext from a random bitstring of the minimum leakage length. On the top of
this requirement, we introduce two sub-notions IND-rCCA1 and IND-rCCA2 about the
error messages. In IND-rCCA1, we follow [BDPS14] to require that the adversary should
not be able to trigger an error except for the first error.

In IND-rCCA2, we impose a stronger security requirement that there should be only
one error disclosed (whether implicitly by leakage or explicitly by decryption) even there
are multiple checks involved. We call this property as error singularity. This notion
ensures that if one of the checks fails to work properly (due to implementation failure or
being bypassed), the adversary should not be able to tell such a failure. This notion also
captures that if adversary’s query passes one of the checks, then this does not grant the
adversary with certainty that its strategy is effective in breaking the check thus to prevent
such a strategy to be used in the subsequent queries.

We then extend this notion to a stronger version, IND-sf-rCCA, to formalize stateful
security in scenarios involving ciphertext reordering, omissions, and deletions within stateful
schemes, where the receiver and sender share the synchronous state. We follow our notion
to analyze the stateful security of the Encode-then-Encipher (EtE) paradigm [BR00] which
is the mainstream way to construct robust AE by using counter for nonce.

We present a minimal modification to boost the robustness of the Encode-then-Encrypt-
then-MAC (EEM) paradigm. Our construction can be interpreted as a substitution of
the MAC with a tweakable VIL cipher. At a high level, we encipher the segment of the
message containing the encoding in the plaintext by additionally padding it with zeros
for authenticity, and just encrypt the remaining segment with any symmetric encryption
scheme as usual. This enables simultaneous verification for authenticity via checks for
presence of correct number of zeros in the deciphered string and validation of correct
encoding. Moreover, in line with the concept of authenticity from existing redundancy
in message by Bellare and Rogaway in [BR00], the existing encoding can also serve as a
part of authenticity. Thus the ciphertext is authentic if the encoding is correct. This also
allows us to obfuscate error flags thus achieve error singularity. We provide a proof that
our construction satisfies common robustness and security requirements according to our
notion.

2 Preliminaries

2.1 Notation
We introduce the following notations that will be used throughout the paper. Let N =
{1, 2, . . .} denote the set of natural numbers. For each n ∈ N, we define the set [n] :=

4 A Characterization of AE Robustness

{1, . . . , n}. Given a set S, we use the notation S≥n :=
⋃

i≥n Si to denote the set of
all non-empty sequences of length at least n over S, and we define S+ := S≥1. Let
x = (x1, · · · , xℓ) ∈ S+ with ℓ ∈ N be a sequence. We denote the length of x by |x| := ℓ.
For y = (y1, . . . , yℓ′) ∈ S′ with ℓ′ ∈ N, we define the concatenation of x and y as
x||y = (x1, . . . , xℓ, y1, . . . , yℓ′). When S = {0, 1}, we refer to such sequences as bit strings.
Let i ∈ {0, 1, . . .}, we denote the ℓ-bit string representation of i as [i]ℓ. We let notation
S[a..b] represent the substring of S that includes indices ranging from a to b. We use ε to
denote empty string where |ε| = 0.

We model a look-up table T that maps key bit strings of length k to value bit strings
of length v as a function {0, 1}k → {0, 1}v ∪ {⊥}, where ⊥ is a special value not belonging
to {0, 1}v. To initialize T to an empty table, we use the notation T ← []. To assign a
value V to a key K in T, we use the notation T[K]← V . If a value has previously been
assigned to K in T, it will be overwritten by V . To read a value associated with a key K
in T and assign it to V , we use the notation V ← T[K]. If there is no value associated
with K in T, V will be assigned the special value ⊥.

Let S be a finite set. We define the notation x ←$ S to represent the selection of a
value from the set S uniformly at random, which we then assign to the variable x. For
an algorithm A, we use the notation y ← AO1,O2,... to denote running A given access to
oracles O1, O2, . . ., and then assigning of the output of A to y.

2.2 Game-Based Proof
We follow the code-based game-playing framework of Bellare and Rogaway [BR06]. This
framework utilizes a game G that consists of an Initialization procedure (Init), a Fi-
nalization procedure (Finalize), and a set of oracle procedures, number of which varies
depending on the specific game. An adversary A interacts with the oracles, which return
responses to the queries made by the adversary via return statements specified in the
oracles’ codes.

A game G is initiated with the Init procedure, followed by the adversary’s interaction
with the oracle. After a number of oracle queries, the adversary halts and outputs an
adversary output. The procedure Finalize is then executed to generate a game output.
If a finalization procedure is not explicitly defined, we consider the adversary output as
the game output. We denote Pr[AInit,O1,O2,··· ⇒ b] as the probability that the adversary
A outputs a value b after the Init procedure and queries to the oracle O1, O2, · · · . We
denote Pr[G(A)⇒ b] as the probability that a game G outputs b when the adversary A
plays game G. For simplicity, we define Pr[G(A)] := Pr[G(A)⇒ 0].

For notion simplicity, we write ∆A(OL; OR) := Pr[AOL ⇒ 0]−Pr[AOR ⇒ 0] to denote
A’s advantage in distinguishing between the oracles OL and OR. We define the symbol ⊥
to represent an oracle that always outputs the invalid symbol ⊥. We use the notation $O

to refer to an oracle that, on an input X, selects a value Y ′ uniformly at random from
the space of all possible outputs with |Y | = |Y ′| where O(X) = Y , and then returns Y ′.
We implicitly assume that $O effectively employs lazy sampling, meaning that whenever
a repeated input X is queried, $O(X) always returns the same output, and otherwise
samples a fresh uniform value.

2.3 Robust Authenticated Encryption (RAE)
We present the definition for RAE since our notions can be also applied to formalize the
security of RAE schemes. We extend the nonce-based definition in [HKR15] to a stateful
scheme to address potential states utilized during encryption and decryption. We present
two sets of definitions for stateful RAE (sRAE) in Definition 1 and nonce-based RAE
(nRAE) in Definition 2.

Ganyuan Cao 5

Definition 1 (Stateful RAE (sRAE)). A stateful robust authenticated encryption (sRAE)
scheme is a tuple Π = (E ,D) specifies two stateful algorithms

E : K ×AD × N×M×ST E → C × ST E

and
D : K ×AD × N× C × ST D →M∪ {⊥} × ST D

where K ⊆ {0, 1}∗ is the space of keys, M⊆ {0, 1}∗ is the space of plaintexts, C ⊆ {0, 1}∗

is the space of ciphertexts, AD ⊆ {0, 1}∗ is the space of associated data, ST E is the space
of encryption states, ST D is the space of decryption states. The encryption algorithm E
takes a five-tuple (K, A, τ, M ; stE) ∈ K ×AD × N×M×ST E , returns a ciphertext-state
pair (C; st′

E) ← Π.EA,τ ;stE
K (M), such that C ∈ C and |C| = |M | + τ . The decryption

algorithm D takes a five-tuple (K, A, τ, C; stD) ∈ K × AD × N × C × ST D, and returns
a message-state pair (M ; st′

D) ← Π.DA,τ ;stD
K (C) such that M ∈ M∪ {⊥}. If there is no

M ∈M such that C = Π.EA,τ ;stE
K (M), then Π.DA,τ ;stD

K (C) = ⊥.

Definition 2 (Nonce-Based RAE (nRAE)). A nonce-based robust authenticated encryp-
tion (nRAE) scheme is a tuple Π = (E ,D) specifies two algorithms

E : K ×N ×AD × N×M→ C

and
D : K ×N ×AD × N× C →M∪ {⊥}

where K ⊆ {0, 1}∗ is the space of keys, N ⊆ {0, 1}∗ is the space of nonces, M⊆ {0, 1}∗ is
the space of plaintexts, C ⊆ {0, 1}∗ is the space of ciphertexts, AD ⊆ {0, 1}∗ is the space of
associated data. The encryption algorithm E takes a five-tuple (K, N, A, τ, M) ∈ K×N ×
AD×N×M, returns a ciphertext C ← Π.EN,A,τ

K (M) such that C ∈ C and |C| = |M |+ τ .
The decryption algorithm D takes a five-tuple (K, N, A, τ, C) ∈ K×N ×AD×N×C, and
returns a message M ← Π.DN,A,τ

K (C) such that M ∈ M ∪ {⊥}. If there is no M ∈ M
such that C = Π.EN,A,τ

K (M), then Π.DN,A,τ
K (C) = ⊥.

3 Security Notions
We introduce the notion IND-rCCA to formalize the security and robustness of a nonce-
based AE scheme, and the notion IND-sf-rCCA for a synchronous stateful AE scheme.
Our notions can be seen as a natural extension from common notions used to formalize AE
security including IND-CCA3 [Shr04] for nonce-based schemes and IND-sfCCA [BKN04]
for stateful schemes. Notably, we include the expansion parameter τ defined for RAE
scheme in our notion. For fixed-expansion schemes, the parameter τ can be discarded.

We define the decryption function D in such a way that it only generates a single error,
denoted as ⊥, and we let ⊥ be the error message explicitly revealed to the adversary. This
aligns with the common strategy adopted by many schemes to mitigate security risks
associated with the disclosure of multiple errors. With our notion, we aim to formalize
the security when plaintexts and error flags are implicitly disclosed to the adversary. By
implicit leakage, an example situation that can be considered is where a scheme uses
multiple boolean values for error checks. Even though the decryption function only returns
⊥ as the output, the adversary might still deduce which error occurred by inspecting the
flag values stored in memory.

We omit the discussion for errors which adversary trivially knows the result even
without querying, for example, ciphertext is shorter than the minimum length supported
by a scheme, or ciphertext is not a multiple of the block size etc. Such query does not
grant the adversary with extra advantage in distinguishing or forging since the adversary
trivially knows the result of such a query.

6 A Characterization of AE Robustness

Leakage Simulator Function. Inspired by SAE notion introduced by Barwell et
al. in [BPS15], we use a leakage simulator function L to capture information that may
inadvertently leak when decryption fails. We improve the definition to capture the leakage
of multiple candidate plaintexts and multiple error flags. We define the leakage function
L as in Definition 3. Here we present the definition for a nonce-based scheme, one can
replace the nonce space N with decryption state space ST D for the definition for stateful
schemes.

Definition 3. The leakage simulation function L is a function

L : K ×N ×AD × N× C → ({0, 1}ℓ × Σ) ∪ {⊤} ∪ {⊔}

where Σ is the space for error message such that the following conditions hold:

1. LN,A,τ
K (C) = ⊔ if there is no leaked plaintext and there is no error message implicitly

revealed. This is defined by the scheme and holds regardless of whether DN,A,τ
K (C) =

⊥ or not for a queried ciphertext C.

2. LN,A,τ
K (C) = ⊤ if C is a valid ciphertext and LN,A,τ

K (C) ̸= ⊔.

3. LN,A,τ
K (C) = (M,⊥) with |M | > 0 if there is leaked plaintext and there is no error

message implicitly revealed. Here M represents the leaked plaintext and ⊥ is the
error message explicitly disclosed by the decryption function D.

4. LN,A,τ
K (C) = (Mi, σi) ∈ {0, 1}ℓ × Σ where ℓ ≥ 0 and |Σ| ≥ 2 if there are more

than one error message implicitly revealed to the adversary. Here Mi is the leaked
plaintext and σi represents its corresponding error message and σi ̸= σj ̸= ⊥ for all
i ̸= j. In the case where there is no leaked plaintext associated with a specific error
message σi, we set Mi to the empty string ε. We assume the check for σi occurs
before σj when i < j.

5. The correctness is defined by: if DN,A,τ
K (C) = ⊥, then LN,A,τ

K (C) ̸= ⊤, and if
LN,A,τ

K (C) = ⊤, then DN,A,τ
K (C) ̸= ⊥.

Remark. To have an error message to be implicitly disclosed, the scheme must
incorporate a minimum of two failure checks. Otherwise, the error message revealed by the
leakage function is essentially equivalent to the single error ⊥ produced by the decryption
function. This is why, in our definition of L, we specify that it outputs ⊥ when no error
message is implicitly disclosed.

Simultaneously, if the scheme defines more than one check for failure, it yields that
σi ̸= σj for i ̸= j and σi ̸= ⊥ for i ≤ |Σ|. This condition arises because if σi = σj for
i ≠ j, all errors become identical, rendering them equivalent to ⊥. Additionally, when
an adversary’s query fails at one of the checks, it provides information to distinguish the
outcome from ⊥.

Example 1. We show two examples of the outputs of the leakage simulator function as
follows. Here we consider tag-based schemes and omit the expansion parameter τ .

1. Encrypt-then-MAC (EtM) [BN00]: The paradigm reveals no plaintext when decryp-
tion fails, since the tag is authenticated using the MAC scheme on the ciphertext,
and the ciphertext remains undecrypted when authentication fails. It is easy to see
that EtM only reveals one error message, that is, due to authenticity-check failure.
Thus LN,A

K (C) = ⊔.

Ganyuan Cao 7

2. Encode-then-Encrypt-then-MAC (EEM) [BKN04]: In this paradigm, the plaintext is
first encoded using, for instance, PKCS padding [Hou09]. Thus the possible outputs
of L are LN,A

K (C) = (ε, σ1) where σ1 indicates that the authenticity-check on tag
fails, or LN,A

K (C) = (M, σ2) where M ∈ {0, 1}ℓ denotes the plaintext in incorrect
encoding, and σ2 indicates an error in decoding.

Error Merging. It is easy to see, if multiple error messages are associated with the
same leaked plaintext M , then the scheme can “merge” those error messages into one error
message, for example, using an AND statement. Consequently, M fails multiple checks
simultaneously, thereby circumventing the need for checks across multiple phases.

Observation 1. Let (M, σi) and (M, σj) with i ̸= j be outputs of L. Then L can be
configured to leak (M, σ′) where σ′ is the merged error of σi and σj. Notably, if the all
possible outputs of L are (M, σi) for i > 1 where σi ∈ Σ is the error defined by the scheme
and M is the same for all σi, then the scheme can be configured to only leak (M,⊥) for a
invalid ciphertext.

3.1 IND-rCCA Security
We describe the game for IND-rCCA notion for (robust) AE as in Figure 1. We introduce
an addition oracle Leak which implements LK to capture the information leaked during
a decryption failure. This notion is defined for a nonce-based scheme.

GIND-rCCAx-0 GIND-rCCAx-1

procedure Initalize
1 : K ←$ K
2 : Qm,Qe,Ql ← ∅

procedure Leak(N, A, C, τ)
1 : if (N, A, C, τ) ∈ Qe ∪Ql

2 : return
3 : Ql ← Ql ∪ {(N, A, C, τ)}
4 : L← LN,A,τ

K (C)

5 : 1 : if L = ⊔ then
2 : return ⊔
3 : elseif L = ⊤ then
4 : return ⊤
5 : else

6 : Mλ ←$ {0, 1}ℓ∗
λ

7 : L← (Mλ, xσ) // xσ ∈ {σ1, ⊥}

6 : return L

procedure Enc(N, A, M, τ)
1 : if (N, A, M, τ) ∈ Qm then
2 : return

3 : C ← EN,A,τ
K (M)

4 : C ←$ {0, 1}|M|+τ

5 : Qm ← Qm ∪ {(N, A, M, τ)}
6 : Qe ← Qe ∪ {(N, A, C, τ)}
7 : return C

procedure Dec(N, A, C, τ)
1 : if (N, A, C, τ) ∈ Qe then
2 : return

3 : M ← DN,A,τ
K (C)

4 : return ⊥
5 : return M

Figure 1: IND-rCCAx games for a nonce-based (robust) AE scheme Π. The dot-boxed
parts are exclusive to GIND-rCCAx-1. At Step 5 in Leak, if it is game GIND-rCCAx-1, then
the dot-boxed code is executed. Here we define ℓ∗

λ as the minimum achievable plaintext
leakage concerning a tuple (N, A, τ) and the ciphertext length |C|. We let ℓ∗

λ ≥ 0 if xσ = σ1
and ℓ∗

λ > 0 if xσ = ⊥.

8 A Characterization of AE Robustness

Definition 4 (IND-rCCAx).

AdvIND-rCCAx
Π (A) := Pr[GIND-rCCAx-0

Π (A)]− Pr[GIND-rCCAx-1
Π (A)]

for x ∈ {1, 2}.

Observation on the Notion. We adopt the real-or-ideal oracle for Leak. In the ideal
world, the oracle first checks if the leakage function returns ⊔ to indicate no leakage at all,
or ⊤ to indicate a valid ciphertext. In this case, the adversary should have 0 advantage in
distinguishing by leakage and we return the same result. Otherwise, the oracle samples
a bitstring Mλ uniformly at random of the length of the minimum plaintext leakage ℓ∗

λ

defined by the scheme with respect to a tuple (N, A, τ) and a ciphertext length |C| (ε if the
length is 0). For example, if the output of L is in {(M1, σ1), (M2, σ2)} with |M1| < |M2|.
Then the minimum length ℓ∗

λ = |M1|. Otherwise if L output (M,⊥), then ℓ∗
λ = |M |.

Error Invariance and Singularity. Based on xσ ∈ {σ1,⊥}, we define two sub-
notions on the error flag. We name them as IND-rCCA1 and IND-rCCA2 respectively.
For notation simplicity, we use IND-rCCA to denote both IND-rCCA1 and IND-rCCA2 if
a result applies to both notions.

1. IND-rCCA1 (Error Invariance): The tuple (Mλ, σ1) is returned in the ideal world.
Our goal with this sub-notion is to ensure that 1) an adversary cannot distinguish
between the leaked plaintext and a random bitstring of the minimum leakage length
defined by the scheme and 2) the adversary cannot trigger an error except for the
first error σ1. These conditions collectively signify that the adversary should not
be able to induce plaintext leakage exceeding the minimum leakage length, and the
leaked plaintext corresponding to the first error must be minimal. Observe that this
notion can be considered as a variant of the error invariance (INV-ERR) notion in
[BDPS14] by also disclosing leaked plaintext.

2. IND-rCCA2 (Error Singularity): The tuple (Mλ,⊥) is returned in the ideal world.
With this notion, in addition to ensuring that indistinguishability of the leaked
plaintext, we require that the leakage function also discloses only one error just
like decryption (even there are multiple checks). With this notion, we evaluate the
disparity between the actual leakage and a single-error decryption function. The
intuition of the notion is to ensure that:

- The adversary gains no meaningful plaintext information unless all checks are
successful.

- If one of the checks fails to function properly (due to implementation flaws or
being bypassed by adversary), the adversary remains unaware of the failure.

- If adversary’s query passes one of the checks, then the adversary should not be
certain that its strategy is effective in breaking the check.

Observe that if there is not leakage at all i.e., the output of L is ⊔, it trivially satisfies
both IND-rCCA1 and IND-rCCA2 notion. Also, a scheme that reveals a single error ⊥
(both implicitly via leakage and explicitly via decryption) is trivially IND-rCCA1 secure if
the leaked plaintext is minimum and indistinguishable, since there is no other error message
that can be generated to be distinguished from the first and the only error ⊥. Conversely,
a scheme that discloses multiple errors cannot be IND-rCCA2. However, to incentivize
the development of single-error schemes, in Proposition 1, we show that IND-rCCA2 is
strictly stronger than IND-rCCA1 when there are at least two errors i.e., |Σ| ≥ 2.

Proposition 1. IND-rCCA2 implies IND-rCCA1 for a scheme that includes at least two
errors i.e., |Σ| ≥ 2.

Ganyuan Cao 9

Proof (Sketch). (IND-rCCA2 → IND-rCCA1). Suppose we have an adversary A that
breaks IND-rCCA1 security. Then A’s query to Leak yields (M, σi) with |M | ≥ |Mλ|
or σi ̸= σ1 to be distinguished from (Mλ, σ1) where Mλ is the random bitstring of the
minimum leakage length. In all the cases, we can use A to distinguish from (Mλ,⊥).

(IND-CCA1 ̸→ IND-rCCA2). Consider an AE scheme that is IND-rCCA1 secure with
two errors σ1, σ2 where σ1 ̸= σ2 and σ1 ̸= ⊥. It yields immediate distinguishing since σ1
will be output to be distinguished from ⊥ for almost any query.

Extraction of IND-ERR. We can then extract the notion IND-ERR, enabling a
focused analysis of the impact of such leakage. The adversary is granted access to the
honest execution of encryption and decryption, allowing for an individual examination of
the influence of the leakage. Similarly, we can define IND-ERR1 and IND-ERR2 based
on xσ ∈ {σ1,⊥} respectively. Here for notion simplicity, we let EK , DK and LK be Enc,
Dec and Leak in game GIND-rCCAx-0 in Figure 1 respectively and we let $L be the Leak
oracle as in Figure GIND-rCCAx-1 in Figure 1. For notation simplicity, we use IND-ERR to
denote both IND-ERR1 and IND-ERR2 if a result applies to both notions.

Definition 5 (IND-ERRx).

AdvIND-ERRx
Π (A) := ∆A(EK ,DK ,LK ; EK ,DK , $L)

for key K ←$ K and x ∈ {1, 2}.

Corollary 1. IND-ERR2 implies IND-ERR1 for a scheme that includes at least two
errors i.e., |Σ| ≥ 2.

Proof. Follow a similar proof of Proposition 1.

Prohibited Queries. We specify the following generally prohibited queries to prevent
trivial wins. These prohibitions are defined for both IND-rCCA and IND-ERR notions.
We let the oracles return the invalid symbol for those prohibited queries.

1. The adversary is not allowed to use the output of Enc to query Dec or Leak.

2. The adversary is not allowed to repeat a query to Enc or Leak with the same tuple.

Also, we do allow the adversary to repeat the nonce to capture the security when a
nonce is possibly misused. Additionally, we stress that, we allow an adversary to query
with variable stretch parameter, that is, the adversary can query with τ1 ̸= τ2 in different
queries. Indeed, with small stretch, the adversary may trivially win the INT-CTXT game
and IND-ERR game. However, this still captures the best achievable security with respect
to a selected stretch parameter.

3.2 IND-sf-rCCA Security
We describe the game for IND-sf-rCCA notion for stateful (robust) AE as in Figure 2.
This notion is specifically for the algorithm that uses synchronous states between the
sender and the receiver. We make the extension from IND-sf-CCA notion introduce in
[BKN04] by introducing the leakage oracle.

Notably, we consider two types of stateful algorithms: one employs synchronous states
between two communicating parties, while the other does not. By “synchronous”, we mean
that at the i-th query, the exact same state is applied for both encryption and decryption.
For instance, a stateful Counter mode (CTR) that utilizes states to monitor the counter
used can be viewed as utilizing synchronous states. In contrast, the SCB mode [Ban22],
which utilizes states to monitor block repetition, features asynchronous states between the
encryption and decryption parties. This notion is specifically defined for schemes that uses
synchronous states between sender and receiver. We then define IND-sf-rCCA as follows.

10 A Characterization of AE Robustness

Definition 6 (IND-sf-rCCAx).

AdvIND-sf-rCCAx
Π (A) := Pr[GIND-sf-rCCAx-0

Π (A)]− Pr[GIND-sf-rCCAx-1
Π (A)]

for x ∈ {1, 2}.

Proposition 2. IND-sf-rCCA2 implies IND-sf-rCCA1 for a scheme that includes at least
two errors i.e., |Σ| ≥ 2.

Proof. Follow a similar proof of Proposition 1.

Extraction of IND-sf-ERR. We then similarly extract the IND-sf-ERR notion from
that of IND-sf-rCCA. Here for notion simplicity, we let EK , DK and LK denote the oracles
Enc, Dec and Leak respectively in game GIND-sf-rCCAx-0 in Figure 2. Additionally, we use
$L to denote the oracle Leak in game GIND-sf-rCCAx-1 in Figure 2. We define IND-sf-ERR
as follows.

Definition 7 (IND-sf-ERRx).

AdvIND-sf-ERRx
Π (A) := ∆A(EK ,DK ,LK ; EK ,DK , $L)

for key K ←$ K and x ∈ {1, 2}.

Corollary 2. IND-sf-ERR2 implies IND-sf-ERR1 for a scheme that includes at least two
errors i.e., |Σ| ≥ 2.

Proof. Follow a similar proof of Proposition 1.

Prohibited Queries. In addition to the queries to Dec or Leak with in-order ciphertext
from Enc, we prohibit the adversary from making consecutive repeated queries to the
Leak oracle. That is because two queries to Leak with the same tuple and the same
state yield the same result and allow the adversary to trivially win the game. Thus we
require that there must be one query to Dec between two successive queries to Leak.
This restriction also aligns with real-world scenarios since leakage can only occur if the
decryption function is invoked. The underlying idea is that, following each update of states,
even when queried with the same tuple, the leakage should appear distinct and random.
Those prohibited queries are defined for both IND-sf-rCCA and IND-sf-ERR notions. We
let the oracles return the invalid symbol for those prohibited queries.

3.3 Separation and Relations
Decomposition Theorems. We decompose IND-rCCA notion into IND-CPA plus
INT-CTXT plus IND-ERR, which captures the security goals of confidentiality, authen-
ticity, and security under decryption leakage respectively. Here we define IND-CPA as
real-or-random security i.e., indistinguishability from random bits as defined in [AR02]
and [RBBK01]. We follow the definition of INT-CTXT as in [BN00].

Theorem 1. For x ∈ {1, 2}, for any IND-rCCAx adversary A, there exist an IND-CPA
adversary Acpa, an INT-CTXT adversary Aint and an IND-ERRx adversary Aerr such
that

AdvIND-rCCAx
Π (A) ≤ AdvIND-CPA

Π (Acpa) + AdvINT-CTXT
Π (Aint)

+ AdvIND-ERRx
Π (Aerr).

Proof. We rewrite the advantage as

AdvIND-rCCAx
Π (A) = ∆A(EK ,DK ,LK ; EK ,DK , $L)

+ ∆A(EK ,DK , $L; $E ,⊥, $L).

Ganyuan Cao 11

GIND-sf-rCCAx-0 GIND-sf-rCCAx-1

procedure Initalize
1 : K ←$ K
2 : i← 0
3 : j ← 0
4 : sync← 1
5 : flag← ()
6 : C← []
7 : stE , stD, stL ← Inital

procedure Dec(A, C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A, C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return
6 : stL ← stD

7 : M ← DstD ;A,τ
K (C)

8 : flag← ()

9 : return ⊥
10 : return M

procedure Enc(A, M, τ)
1 : i← i + 1
2 : C ← E stE ;A,τ

K (M)

3 : C ←$ {0, 1}|M|+τ

4 : C[i]← (A, C, τ)
5 : return C

procedure Leak(A, C, τ)
1 : if j > i ∨ C ̸= C[j]
2 : sync← 0
3 : if sync = 1 ∨ flag = (A, C, τ) then
4 : return
5 : flag← (A, C, τ)
6 : L← LstL;A,τ

K (C)

7 : 1 : if L = ⊔ then
2 : return ⊔
3 : elseif L = ⊤ then
4 : return ⊤
5 : else

6 : Mλ ←$ {0, 1}ℓ∗
λ

7 : L← (Mλ, xσ) // xσ ∈ {σ1, ⊥}

8 : return L

Figure 2: IND-sf-rCCAx games for a stateful (robust) AE scheme Π with synchronous
states. The boxed parts are exclusively to game GIND-sf-rCCAx-1. Here we define ℓ∗

λ as the
minimum achievable plaintext leakage concerning a tuple (A, τ) and the ciphertext length
|C|. We let ℓ∗

λ ≥ 0 if xσ = σ1 and ℓ∗
λ > 0 if xσ = ⊥. Here we use Initial to denote the

initial state. In Line 6 of Dec, we copy the decryption state stD to the leakage state stL
for synchronization, and we still call D to update stD in ideal world and thus to update
stL. Here flag is to ensure the adversary does not make prohibited queries.

By definition, we have that

AdvIND-ERRx
Π (Aerr) = ∆Aerr

(EK ,DK ,LK ; EK ,DK , $L).

for an IND-ERRx adversary Aerr.
Now given an adversary A with AdvΠ(A) = ∆A(EK ,DK , $L; $E ,⊥, $L), we can then

construct an IND-CCA3 adversary B from A. If x = 1, we simulate the oracle $L by
simply returning ⊔ if no leakage is defined by the scheme or sampling a bitstring Mλ of the
minimum leakage length uniformly at random and return the tuple (Mλ,⊥) as response
to A’s queries. Otherwise if x = 2, we return the tuple (Mλ, σ1) where σ1 is the first error
message. We then have B return the same bit b returned by A. We can then bound the
advantage of B as follow.

∆A(EK ,DK , $L; $E ,⊥, $L) ≤ AdvIND-CCA3
Π (B)

12 A Characterization of AE Robustness

Now following [Shr04, Theorem 2], we can further decompose the advantage as

AdvIND-rCCAx
Π (A) ≤ AdvIND-CPA

Π (Acpa) + AdvINT-CTXT
Π (Aint)

+ AdvIND-ERRx
Π (Aerr).

Similarly, we can decompose IND-sf-rCCA notion into IND-CPA plus INT-sf-CTXT
plus IND-sf-ERR. Here we replace the left-or-right encryption oracle with a real-or-random
oracle in the definition of IND-sfCCA advantage in [BKN04] and we follow the definition
of INT-sf-CTXT as in [BKN04].
Theorem 2. For x ∈ {1, 2}, for any IND-sf-rCCAx adversary A, there exist an IND-CPA
adversary Acpa, an INT-sf-CTXT adversary Aint and an IND-sf-ERRx adversary Aerr

such that
AdvIND-sf-rCCAx

Π (A) ≤ AdvIND-CPA
Π (Acpa) + AdvINT-sf-CTXT

Π (Aint)
+ AdvIND-sf-ERRx

Π (Aerr).

Proof. The proof follows a similar proof of Theorem 1 by replacing IND-CCA3 with
IND-sfCCA.

Implication between Notions. The following set of relationships is inherently obvious.
We present them here to provide completeness and we omit proofs since they are trivial.
Proposition 3. IND-sf-rCCAx implies IND-rCCAx for x ∈ {1, 2}.
Corollary 3. IND-sf-ERRx implies IND-ERRx for x ∈ {1, 2}.

Separation from AE Notions. Note that in IND-ERR notions, we return ⊤ both in
the real world and the ideal world. This removes the overlap with integrity notion. In
Proposition 4, we separate IND-ERR from INT-CTXT and IND-CCA3 by showing that
there is no implication between those notions.
Proposition 4. IND-ERR does not imply INT-CTXT and IND-CCA3 does not imply
IND-ERR
Proof (Sketch). (IND-ERR ̸→ INT-CTXT). We consider an Encrypt-then-MAC scheme
where C = M ⊕KE and T = C⊕KM . The ciphertext returned is C||T . Note that there is
no leaked plaintext since the tag is computed based on the ciphertext, and there is only one
error message with tag checking. Thus both oracles will output ⊔ meaning that IND-ERR
advantage is 0. Nevertheless, an adversary can forge a valid ciphertext by querying the
encryption oracle to obtain C||T and returning C ⊕ 1n||T ⊕ 1n as forgery.

(IND-CCA3 ̸→ IND-ERR2). We consider the Encrypt-then-MAC paradigm in which
the MAC scheme is strongly unforgeable. However, we consider a configuration in which
the ciphertext is first decrypted before verifying the tag during the decryption process.
Encrypt-then-MAC is IND-CCA3 secure as established by combining the results from
[BN00] and [Shr04]. Thus the leakage tuple will be (M,⊥) where M is the plaintext. The
adversary can exploit this by taking a ciphertext obtained from a previous encryption
query, replacing the valid tag with an invalid one to create a new ciphertext and induce
a decryption failure in the leakage oracle. Consequently, the adversary can break the
IND-ERR2 security by comparing the plaintext used in that encryption query with the
obtained leakage.

(IND-CCA3 ̸→ IND-ERR1). We again consider Encrypt-then-MAC with the “decryp-
tion first” configuration. We assume the plaintext is encoded and we let σ1 be the error of
incorrect encoding and σ2 be the authenticity failure. Following the same strategy, the
adversary can bypass the check for encoding and trigger σ2.

Ganyuan Cao 13

3.4 Comparison with Existing Notions
We make a brief comparison to differentiate our notion from the existing notions, specifically
RAE security from [HKR15], the error invariance from [BDPS14], and error simulatability
from [BPS15].

RAE Security. In RAE security, the comparison is made with a random injection as a
whole, whereas our notion focuses on the indistinguishability of the leakage itself. RAE
formalize the leakage in a generalized way where a plaintext is always leaked in case of
decryption failure, and the case involving multiple errors has not been studied. Regarding
the plaintext leakage, one key property of RAE is to ensure that the leaked plaintext has
length |M | ≠ |C| − τ for a queried ciphertext C and an expansion parameter τ . Notably,
our notion can also be adapted to capture that by additionally requiring ℓ∗

λ to be not equal
to |C| − τ .

Error Invariance. In [BDPS14], Boldyreva et al. defined that a decryption scheme
generates multiple error messages. The notion of error invariance (INV-ERR) dictates that
the adversary must be unable to generate more than one of these possible error messages.
Since the decryption scheme only outputs a single error message in our notion, we draw a
parallel to our leakage simulator function. In IND-rCCA1, we require that the adversary
cannot induce an error other than the first error message, aligning with the idea of error
invariance. For IND-rCCA2, we require that the scheme should only produce a single error
message, whether implicitly or explicitly. This automatically satisfies error invariance.
Moreover, our notion associates the leaked plaintext with the error message, while error
invariance primarily concerns the error message itself.

Proposition 5. IND-ERR implies INV-ERR.

Proof (Sketch). Suppose that there is an INV-ERR adversary A, we can use it to construct
an IND-ERR1 adversary B as follows. For each of A’s decryption query, we let B forward
it to its oracle Leak. Then if Leak yields σ1, we let B response A’s query with ⊥. Note
that A eventually queries a ciphertext C yielding an error other than ⊥. When B queries
C, it yields a new error σ2. Also, IND-ERR2 implies INV-ERR following IND-ERR2
implies IND-ERR1 as in Corollary 1.

Error Simulatability. In [BPS15], Barwell et al. introduced the concept of a leakage
simulator function. They define the leakage function L as L : K×N ×AD×C → {⊤}∪Λ
where Λ represents the leakage space that accommodates various types of leakage including
multiple errors, candidate plaintexts, arbitrary string, or the classical case where nothing is
leaked. The security of error indistinguishability (ERR-CCA) is formalized by comparing
oracles that implement L with the real key K and a different random key K ′.

We observed that the definition is in a very generalized way, and the comparison
does not adequately capture the impact of the leakage itself due to an overlap with the
integrity notion. For a valid ciphertext C, LK(C) yields ⊤ while LK′(C) almost for sure
outputs something other than ⊤ to be distinguished. This requires us to always consider
an integrity adversary when bounding the advantage, which fails to capture the impact of
the leakage itself. This is more apparent when there is no leakage. An adversary should
have 0 advantage in distinguishing by leakage when there is no leakage but we have to
consider an integrity adversary then. Thus to resolve this issue, we let the oracles in both
real and ideal world to return ⊤ or ⊔ when the leakage function yields such an output.

Plaintext Awareness. In [ABL+14], Andreeva et al. introduced plaintext awareness
to capture the indistinguishability of the plaintext where the ciphertext is always decrypted
and no check is not involved at all. Particularly, we consider the stronger version PA2
security and define it in Definition 8.

14 A Characterization of AE Robustness

Definition 8 (PA2). Let D̃ be the decryption function without authenticity check such
that D̃ always output a plaintext, then

AdvPA2
Π (A) := ∆A(EK , D̃K , ; EK , $D̃)

for key K ←$ K.

Notably, PA2 security consider the indistinguishability of the plaintext when all checks
are bypassed, whereas our IND-ERR2 notion stresses that the adversary should not tell
which error has been triggered and use it for further attack. As discussed in many studies
including [Vau02, CHVV03, PRS11], the revelation of the error message alone can lead
to significant attacks. In Proposition 6, we separate our IND-ERR2 notion from PA2
security. However, we acknowledge the significance of PA security in ensuring the AE
robustness as it guarantees the confidentiality of the plaintext when all check mechanisms
are circumvented. We conclude that an AE scheme should achieve both IND-ERR2 and
PA2 to be considered robust.

Proposition 6. PA2 security does not imply IND-ERR2 security, and IND-ERR2 security
does not imply PA2 security.

Proof. (IND-ERR2 ̸→ PA2). We consider EtM paradigm as in Example 1. We know the
IND-ERR2 advantage is 0 since there is no leaked plaintext and there is only one error.
However, it is trivial to break PA2 security by changing the tag of a ciphertext obtained
from a previous encryption query.

(PA2 ̸→ IND-ERR2). We consider the Encode-then-Encipher paradigm where two
errors are checked. Thus the possible outputs of L are (M, σ1) and (M, σ2) where M
is the deciphered string. Then it is PA2 secure if the cipher is secure as a tweakable
pseudorandom permutation. However, it is not IND-ERR2 secure since for almost every
query σ1 will be output to be distinguished from ⊥.

Remark. This proof may be somehow abstract. In the following discussion, we will
show a better example on the separation of the two notions.

4 Stateful Security of Encode-then-Encipher
Encode-then-Encipher (EtE), proposed by Bellare and Rogaway in [BR00], is the main-
stream way to construct robust AE. In [HKR15], Hoang et al. proved that EtE with
VIL cipher achieves the security as a pseudorandom injection (PRI). However, there has
been limited studies about the stateful security of a robust AE scheme. In [BMM+15],
Badertscher et al. showed the security of the Encode-then-Encipher from the view of
composable security with the Constructive Cryptography (CC) framework proposed by
Maurer in [Mau11], by constructing a random injection channel (RIC) from a uniform
random injection (which ideally models a VIL cipher) and an insecure channel. The RIC
models an ideal world in which a counter is used as nonce, and the adversary only has
knowledge of the associated data and the message length. We then follow the idea of
[BMM+15] by also using counter as nonce and prove the security and robustness of EtE
from a more generalized game-based perspective with our notion.

4.1 EtE with Tweakable Cipher
Let E : K ×N ×AD ×M→ C be a variable-input-length cipher, we define a robust AE
scheme Π = (E ,D) using EtE as follows. Let C = Π.EN,A,τ

K (M) = EK,N,A(M ||0τ) and
return C as ciphertext. Let M ′ = E−1

K,N,A(C), then if M ′ ends with λ zeros, Π.DN,A,τ
K (C)

Ganyuan Cao 15

returns M ′ excluding ending τ zeros as plaintext. Otherwise, Π.DN,A,τ
K (C) return decryp-

tion failure symbol ⊥.
Such cipher can be formulated as a tweakable cipher Ẽ : K × T ×M→ C as described

in [LRW02]. Here we set the tweak space T = N × AD. The security of a tweakable
block cipher is defined as (strong) indistinguishability from tweakable random permutation
((±)P̃RP), which is a random permutation parameterized by tweak T . To adapt this
notion to a VIL cipher, we introduce an additional length parameter. Let P̃ℓ represent
the set of all tweakable permutations on {0, 1}ℓ. For each pair (T, ℓ) ∈ T × N, we define
π̃T,ℓ(·) as a permutation sampled independently and uniformly at random from P̃ℓ.

Lemma 1. If each tweak T queried by an adversary A is distinct, then

Pr[Aπ̃T,ℓ(·) ⇒ 0]− Pr[A$(·) ⇒ 0] = 0

for every ℓ ≥ 0, where π̃T,ℓ is a tweakable random permutation and $ is an oracle that
samples a bitstring uniformly at random of length ℓ.

Proof. Consider that with an oracle that samples and outputs a random bitstring, the
probability that a bitstring L ∈ {0, 1}ℓ is output to the adversary is 1

2ℓ at each query.
On the other hand, in an oracle that implements random tweakable permutations, if the
tweak does not repeat, it implies that a new tweakable random permutation is sampled
for each query based on the tweak T . Thus the probability that M is mapped to the
bitstring L ∈ {0, 1}ℓ is also 1

2ℓ at each query. Consequently, both oracles exhibit the same
distribution, meaning that the adversary has 0 advantage in distinguishing between these
two oracles.

4.2 Proof of Security
Following [BMM+15], we also use counter as nonce when analyzing the stateful security.
Here for simplicity we assume that |N | ≥ q where q is the number of queries made by A
and one can make the proof more rigorous by bounding the probability that a counter
may repeat.

Theorem 3. For any IND-sf-rCCA2 adversary A against the EtE construction Π making
qd decryption queries and ql leakage queries, there is a ±̃PRP adversary Astprp against
the tweakable VIL cipher Ẽ making q encryption queries such that

AdvIND-sf-rCCA2
Π (A) ≤ 3 ·Adv±̃PRP

Ẽ
(Astprp) + qd

2τ
+ ql

2τ

where τ is the minimum expansion parameter queried by A.

Proof. The proof follows Theorem 2, and Lemma 2, 3 and 4.

Lemma 2. For any IND-CPA adversary A against the EtE construction Π making q

encryption queries, there is a P̃RP adversary Atprp against the tweakable VIL cipher Ẽ
making q encryption queries such that

AdvIND-CPA
Π (A) = AdvP̃RP

Ẽ
(Atprp)

Proof (Sketch). We consider three games G0 – G2 where adversary’s queries are answered
with the tweakable VIL cipher Ẽ, a tweakable random permutation π̃, and a random
bitstring of length |M |+ τ respectively. We have that

AdvIND-CPA
Π (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)]

16 A Characterization of AE Robustness

Then we can bound Pr[G0(A)]− Pr[G1(A)] by a P̃RP adversary Atprp. Following Lemma
1, we know that Pr[G1(A)]− Pr[G2(A)] = 0 since we assume counter does not repeat.

Lemma 3. For any INT-sf-CTXT adversary A against the EtE construction Π making q

decryption queries, there is a ±̃PRP adversary Astprp against the tweakable VIL cipher Ẽ
making q decryption queries such that

AdvINT-sf-CTXT
Π (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + q

2τ

where τ is the minimum expansion parameter queried by A.

Proof (Sketch). We consider two games G0 and G1 where the adversary’s encryption and
decryption queries are answered with Ẽ and Ẽ−1, and π̃ and π̃−1 respectively. We then
have that

AdvINT-sf-CTXT
Π (A) = Pr[A wins G0]− Pr[A wins G1] + Pr[A wins G1]

Similarly, we can bound Pr[A wins G0] − Pr[A wins G1] by a ±̃PRP adversary Astprp.
Since we assume the counter does not repeat and we have a fresh permutation for each
counter, the adversary wins G1 when its query yields a bitstring ending with τ zeros, which
is of probability at most q

2τ .

We first define the leakage simulator function L for the EtE paradigm. Consider that
during the decryption, M ′ = Ẽ−1

K;N,A(C) is first deciphered. Depending if M ′ ends with τ
zeros, L outputs either ⊤ or M ′. Notably, there is only one error which is when M ′ does
not end with τ zeros. Thus LN,A,τ

K (C) = (M ′,⊥) for an invalid ciphertext C.

Lemma 4. For any IND-sf-ERR2 adversary A against the EtE construction Π making
q leakage queries, there is a ±̃PRP adversary Astprp against the tweakable VIL cipher Ẽ
making q decryption queries such that

AdvIND-sf-ERR2
Π (A) = Adv±̃PRP

Ẽ
(Astprp)

where τ is the minimum expansion parameter queried by A.

Proof (Sketch). We consider three games G0 – G2 for the proof. In G0, A’s queries are
answered with Ẽ and Ẽ−1 respectively. In G1, A’s queries are answered with π̃ and π̃−1

respectively. In game G2, a bitstring Mλ is sampled uniformly at random of length |M ′|
and the oracle Leak returns (Mλ,⊥) to A. We still answer A’s encryption and decryption
query with π̃ and π̃−1 respectively. We have that

AdvIND-sf-ERR2
Π (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)]

Similarly, we bound Pr[G0(A)]−Pr[G1(A)] by a ±̃PRP adversary Astprp. Since we assume
the counter does not repeat and follow Lemma 1, G1 and G2 are identical thus A has 0
advantage in distinguishing between them.

Authenticity from Existing Redundancy. One key feature of Encode-then-Encipher
paradigm is that: when there exists redundancy in the plaintext, such redundancy can be
exploited to establish or enhance authenticity. We define the density of message space M
to measure how redundant the message space is as in Definition 9.

Ganyuan Cao 17

Definition 9 (δ-dense). Let v : {0, 1}ℓ → {true, false} be a predicate for ℓ ∈ N. We say
M⊆ {0, 1}ℓ is δ-dense with respect to the predicate v if

Pr[∀M ∈M : v(M) = true] ≤ δ.

In that case, a valid forgery must pass two checks simultaneously, that is, satisfying
the predicate and ending with τ zeros. Thus we obtain a new bound for the integrity as in
Corollary 4.

Corollary 4. Assume the message space M is δ-dense, then for any INT-sf-CTXT
adversary A against the EtE construction Π making q leakage queries, there is a ±̃PRP
adversary Astprp against the tweakable VIL cipher Ẽ making q decryption queries such
that

AdvIND-sf-ERR1
Π (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + δq

2τ
.

Leakage with Multiple Errors. Suppose that M is δ-dense, the possible leakage
tuples are (M ′, σ1) and (M ′, σ2). Then for IND-ERR1 security which requires that the
adversary should not see an error message other than σ1, we can obtain a bound as in
Corollary 5.

Corollary 5. Assume the message space M is δ-dense, then for any IND-sf-ERR1
adversary A against the EtE construction Π making q leakage queries, there is a ±̃PRP
adversary Astprp against the tweakable VIL cipher Ẽ making q decryption queries such
that

AdvIND-sf-ERR1
Π (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + q

2τ

if σ1 implies M ′ does not ends with τ zeros, or

AdvIND-sf-ERR1
Π (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + δ

if σ1 implies v(M ′) = false.

Observe that the leakage tuples both concern the same leaked plaintext M ′. Following
Observation 1, we can merge them into one leakage tuple (M ′,⊥). Then it is trivially
IND-sf-rCCA1 secure given that there is no other error than ⊥. Observe that if M ′ passes
one of the checks, the leaked plaintext may exhibit certain property e.g., with τ ending
zeros. Nevertheless, the probability that the oracle in ideal world generates such a bitstring
is the same, yielding the adversary no more advantage than flipping a coin. Thus the
IND-sf-rCCA2 advantage after the merging of errors follows Lemma 4.

Indistinguishability of Leaked Plaintext. Note that the adversary cannot distin-
guish between two worlds only from M ′, even if the leaked plaintext M ′ passes one of the
checks. That is because the probability that the oracles in the two worlds output such a
string is the same. Nevertheless, the adversary can distinguish by looking for σ2 to identify
the real world (since σ1 is always output in the ideal world). After merging two errors
into one following Observation 1, ⊥ will be output instead of σ2 thus the adversary can no
longer distinguish by error message. This allows to reduce the adversary’s advantage by
removing the term q

2τ and δ from the bound. This may be an abstract example of error
obfuscation. In the following discussion, we will use this property to add robustness to
EEM paradigm.

5 Modification for Robust EEM
Some Observations on EEM. We revisit the Encode-then-Encrypt-then-MAC as in
Example 1. The possible outputs of leakage simulator function are (ε, σ1) and (M, σ2)

18 A Characterization of AE Robustness

where σ1 indicates the failure with check on tag, σ2 indicates the incorrect encoding, and
M represents the bitstring that has not undergone the decoding process. Following the
result in [BDPS14], it is easy to see that if the encryption scheme is IND-CPA and the
MAC scheme is SUF-CMA, then EEM is IND-rCCA1 secure.

We examine EEM through the intuition of IND-rCCA2 as described in Paragraph 3.1.
Note that the decryption function holds back plaintext output until both checks successfully
pass. Suppose the tag check fails to operate correctly (such that all ciphertexts being
deemed valid), then there is an unavoidable leakage of plaintext (in incorrect encoding)
since the encoding check has to be performed on plaintext. Thus the adversary sees (M, σ2).
Then the adversary immediately knows that the tag check is broken and the only error
now is with the encoding. Then the adversary can continue with other attacks based on
the error message and leaked plaintext.

Similarly, if the adversary manages to forge a tag, then the adversary is certain that
its strategy is successful and can adopt that in the future forgery.

Proposition 7. EEM is not IND-rCCA2 secure.

Proof (Sketch). We first suppose the possible leakage tuples are (ε, σ1) and (M, σ2). Then
it is trivially not IND-rCCA2 secure.

Now suppose the scheme successfully combines σ1 and σ2 to produce a single error
⊥, the leakage function’s output becomes (M,⊥). In this case, the adversary can simply
exploit the ciphertext obtained from an encryption query and change the tag to an invalid
one to distinguish M from a random bitstring.

5.1 The Construction

rEEM[Π, Ẽ, H1, H2].EN,A,τ
KE ,KM ,KH

(M)
1 : ML||MR ←M

2 : N ′ ← H1KH
(N, MR, A, τ)

3 : CL ← Π.EN′
KE

(ML)
4 : M∗

R ← Encode(MR)
5 : M ′

R ←M∗
R||0τ

6 : h← H2KH
(CL, A, τ)

7 : CR ← ẼKM ;h(M ′
R)

8 : C ← CL||CR

9 : return C

rEEM[Π, Ẽ, H1, H2].DN,A,τ
KE ,KM ,KH

(C)
1 : CL||CR ← C

2 : h← H2KH
(CL, A, τ)

3 : M ′
R ← Ẽ−1

KM ;h(CR)
4 : ℓ← |M ′

R|
5 : M∗

R ←M ′
R[0..(ℓ− τ − 1)]

6 : pad←M ′
R[(ℓ− τ)..(ℓ− 1)]

7 : if pad ̸= 0τ ∨Decode(M∗
R) = ⊥ then

8 : return ⊥
9 : MR ← Decode(M∗

R)
10 : N ′ ← H1KH

(N, MR, A, τ)

11 : ML ← Π.DN′
KE

(CL)
12 : return ML||MR

Figure 3: Robust EEM (rEEM) as a composition of nonce-based SE and Encode-then-
Encipher paradigm. In line 7 of the decryption function, we let Decode return ⊥ if M∗

R

does not follow the correct encoding.

We present the construction for an enhanced version of Encode-then-Encrypt-then-
MAC as described in Figure 3. Following the discussion of authenticity from verifiable
redundancy in [BR00], in this construction, we can take the encoding into consideration
during the authenticity-check. Thus the authenticity is guaranteed if the encoding is
correct. We assume that an encoding scheme Encode = (Encode, Decode) is applied on

Ganyuan Cao 19

Π.EKE

ML

CL

H
1 K

H

H
2

K
H

MR

Encode

M∗
R 0τ

M∗
R

N
τ

EKM

A

N ′

CR

τ

Π.DKE

CL

ML

H
1 K

H

MR

Decode

⊥N

Y

M∗
R

=0τ ⊥NY

E−1
KM

CR

H
2

K
H

τ

A

N ′

τ

Figure 4: Graphic illustration for robust EEM. Left: Encryption function of rEEM. Right:
Decryption function of rEEM.

certain part of the plaintext. As with the example of PKCS padding, we either fill the last
block or create a new block full of paddings. Following Definition 9, we say Encode is a
δ-dense encoding scheme if

Pr[∀M ∈M : Decode(M) ̸= ⊥] ≤ δ

where Decode(M) = ⊥ means M does not follow the correct encoding.
During encryption, we first partition the plaintext into two segments ML and MR

where MR is to be encoded. We assume the length of ML is a multiple of the block size.
Thus we can use a symmetric encryption scheme to encrypt ML to obtain the ciphertext
CL. Then we encode MR and pad the encoding bitstring with τ zeros after it, where τ
is the stretch selected by the user. We let the resulted bitstring be M ′

R. To connect the
left and right part, we compute the hash of CL, the associated data A, and the stretch
τ . We use a tweakable VIL cipher with the hash as tweak to encipher M ′

R to obtain the
ciphertext CR. The final ciphertext is the concatenation CL||CR.

During the decryption, we similarly partition the ciphertext C into CL and CR. We
then reverse the encryption procedure to first decipher CR, thereby yielding bitstring M ′

R.
We can then check whether M ′

R ends with τ zeroes and the rest part of M ′
R can be decoded

correctly. If not, it indicates a authentication failure and the decryption process halts.
Otherwise, the decryption process continues with the decryption of CL, leading to the
retrieval of the plaintext segment ML. Finally, the concatenation of ML and MR forms
the plaintext as output.

Comparison with Standard EEM. After the modification, the adversary can no
longer distinguish if one of the checks fails to work since a queried ciphertext has to pass
two checks at the same time. On the other hand, suppose the adversary’s query passes

20 A Characterization of AE Robustness

one check, for example, yielding a bitstring ending with τ zeros. This does not guarantee
the adversary that its strategy is effective in generating a bitstring like that, following the
discussion in Paragraph 4.2.

Nonce-Misuse Resistance. When instantiating our construction with a nonce-based
encryption scheme, we follow the Feistel structure [Fei73] to provide nonce-misuse resistance.
On the input of a tuple (N, M, A, τ), we compute the hash H(N, ML, A, τ) and use the
hash as the new nonce for encrypting MR. The Feistel structure guarantees the uniqueness
of the tuple (N, M, A, τ). Changing one of (N, MR, A, τ) yields a new nonce. Otherwise,
the adversary has to change ML since query with a repeated tuple is not allowed.

Plaintext Awareness Security. Note that even if the adversary manages to bypass
both of the two checks, as long as MR is not recovered by the adversary, ML still remains
confidential thanks to the Feistel structure, since the nonce for decrypting CL is computed
based on MR with a universal hash function. Observe that if M∗

R does not satisfy the
encoding, the part MR that is used to computed the nonce cannot be extracted from M∗

R.
Thus further decryption is not possible.

We can consider this construction a better example to show that PA2 does not imply
IND-ERR2 in Proposition 6. In contrary to rEEM construction, we encode ML instead
and just let |MR| > 0. Suppose that the adversary bypasses the authenticity check. As
long as the adversary does not recovery MR, then it yields a different N ′ to decrypt for
ML. Thus ML is still indistinguishable. Nevertheless, we can observe that ML fails the
encoding check, which produces a σ2.

Comparison with Existing Construction. In contrast to the Encode-then-Encipher
method, which deciphers the entire plaintext before authentication, our construction
deciphers only a portion of the ciphertext for authenticity, leaving the rest undecrypted.
While Encode-then-Encipher is more suitable when encoding spans the entirety of the
plaintext, our method remains practical as it aligns with common scenarios where plaintext
consists of both encoded elements and payload components, such as PKCS padding and
UDP headers.

Additionally, in contrast to those construction that also adopts Feistel structure but
instead uses IV for authenticity, such as SIV [RS06] and RIV [AFL+16], our construction
not only minimizes the disclosure of plaintext before authenticity check but also incorporates
the ciphertext by utilizing a segment of it as the tweak.

5.2 Security
Theorem 4. Let Encode be a δ-dense encoding scheme, then for any IND-rCCA2 adversary
A making qd decryption queries and ql leakage queries agaisnt Ψ = rEEM[Π, Ẽ, H1, H2],
there exist an IND-CPA adversary Acpa against Π, a ±̃PRP adversary Astprp against Ẽ
such that

AdvIND-rCCA2
Ψ (A) ≤ AdvIND-CPA

Π (Acpa) + 3 ·Adv±̃PRP
Ẽ

(Astprp)

+ 3ϵ + δqd

2τ
+ q2

l

2τ

where τ is the minimum stretch parameter queried by A.

Proof. Follows by combining Lemmas 5, 6, and 7 with Theorem 1.

Lemma 5. For any IND-CPA adversary A against Ψ = rEEM[Π, Ẽ, H1, H2] making q

encryption queries, there exist an IND-CPA adversary Acpa against Π, a P̃RP adversary

Ganyuan Cao 21

Atprp against Ẽ such that

AdvIND-CPA
Ψ (A) ≤ AdvIND-CPA

Π (Acpa) + AdvP̃RP
Ẽ

(Atprp) + 2ϵ.

Proof (Sketch). We need to show that the left and the right segments of the ciphertext
are both indistinguishable from a random bitstring. For CL, if a collision happens with H,
then the nonce N ′ repeats yielding trivial distinguishing, which is bounded by probability
ϵ. Otherwise, we can reduce it to the IND-CPA security of the encryption scheme Π.

For CR, we follow a similar proof as in Lemma 2. Notably, a tweak repeats when the
collision happens with H, which happens with probability at most ϵ.

Lemma 6. Let Encode be a δ-dense encoding scheme, then for any INT-CTXT adversary
A against Ψ = rEEM[Π, Ẽ, H1, H2] making q decryption queries, there exist an ±̃PRP
adversary Astprp against Ẽ and such that

AdvINT-CTXT
Ψ (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + ϵ + δq

2τ

where τ is the minimum stretch parameter queried by A.

Proof (Sketch). Observe that the authenticity of the construction only depends on CR.
We first consider two cases when a tweak used in decryption matches with a tweak used in
a previous encryption query. Let C = CL||CR be the result of that previous encryption
query. In the first case, a collision happens with the hash function H, the the adversary
can simply reuse CR and change one of CL, N and A to provoke a collision in H. This
happens with probability at most ϵ. On the other hand, if A reuses (CL, A, τ), then A has
to query with C ′

R different from CR. In this case, C ′
R has to be deciphered with a random

permutation to a bitstring that can be decoded successfully and ends with τ zeros, which
happens with probability less than δq

2τ .
Otherwise if each tweak used in decryption is distinct from that in previous encryption

queries, we then have a fresh random permutation for every decryption query. Then A
wins the game only when the ciphertext deciphers to a bitstring that ends with τ leading
zeros and can be decoded successfully, which is of probability at most δq

2τ .

Observe that the leakage simulator function is similar as in EtE construction but on
CR, that is, LN,A,τ

K (C) = LN,A,τ
K (CR) = (M ′

R,⊥). If the authenticity fails, CL remains
undecrypted, which means no leaked plaintext then.

Lemma 7. For any IND-ERR2 adversary A against Ψ = rEEM[Π, Ẽ, H1, H2] making q

leakage queries, there exists a ±̃PRP adversary Astprp against Ẽ such that

AdvIND-ERR2
Ψ (A) ≤ Adv±̃PRP

Ẽ
(Astprp) + q2

2τ

where τ is the minimum stretch parameter queried by A.

Proof (Sketch). Observe that the leakage only concerns M ′
R. If each tweak in Leak is

distinct, then adversary has 0 advantage in distinguishing following Lemma 1. Otherwise,
if a tweak repeats, then the adversary may look for repeated output to distinguish the
ideal world from the random world (since the real world implements a permutation), which
happens when the oracle in ideal world samples the same bitstring, with probability at
most q2−q

2|M′
R

| ≤
q2

2τ .

22 A Characterization of AE Robustness

6 Conclusion and Future Work
We introduce a new notion IND-rCCA to formalize the robustness of AEAD scheme. Our
notion can be seen as an extension from commonly accepted notions including IND-CCA3
by considering an additional oracle to capture the security when there is leakage due to
decryption failure. We consider the situation where there are multiple checks for errors.
We associate leaked plaintext with the error message that it triggers. We pose the security
requirement that the leaked plaintext is indistinguishable from a random bitstring of the
minimum leakage. On top of this, we define two security notions regarding the error
messages where one requires that the adversary should not be able trigger more errors
than the first error. In the other one, we introduce the concept of error singularity. This
ensures that the adversary cannot distinguish a failure if one of the check fails to work
in a scheme containing multiple checks. This also ensures that the adversary cannot be
certain that its attack is effective even if the query passes one of the checks.

We further extend this notion to IND-sf-rCCA to capture the stateful security where
out-of-order ciphertexts are queried by the adversary. We prove the stateful security of
the Encode-then-Encipher (EtE) paradigm which is a mainstream way to construct robust
AE by using counter for nonce.

We revisit the robustness of Encode-then-Encrypt-then-MAC (EEM) paradigm by
examining the leakage when decryption fails. We propose a modification to the paradigm
by replacing the MAC with Encode-then-Encipher on partial plaintext. This modification
merges two checks into one with minimal plaintext leakage, which allows the scheme to
reveal only one error message to achieve error singularity.

Our notion can be useful for evaluating if the actual implementation of a cryptographic
scheme is secure. Even a scheme is proven to be secure, various configuration or sequence
of operation may cause the leakage that grants the adversary extra advantage. Our
modification to EEM is a very preliminary step to error singularity. Further work may be
done including introducing a more rigorous notion and securer scheme for error singularity.

References
[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,

and Kan Yasuda. How to securely release unverified plaintext in authenticated
encryption. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 105–125. Springer, Heidelberg, December
2014. doi:10.1007/978-3-662-45611-8_6.

[AFL+16] Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel.
RIV for robust authenticated encryption. In Thomas Peyrin, editor, FSE 2016,
volume 9783 of LNCS, pages 23–42. Springer, Heidelberg, March 2016. doi:
10.1007/978-3-662-52993-5_2.

[AR02] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography
(the computational soundness of formal encryption). Journal of Cryptology,
15(2):103–127, March 2002. doi:10.1007/s00145-001-0014-7.

[Ban22] Fabio Banfi. SCB mode: Semantically secure length-preserving encryption.
IACR Trans. Symm. Cryptol., 2022(4):1–23, 2022. doi:10.46586/tosc.v2022.
i4.1-23.

[BDPS14] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn
Stam. On symmetric encryption with distinguishable decryption failures. In
Shiho Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 367–390. Springer,
Heidelberg, March 2014. doi:10.1007/978-3-662-43933-3_19.

https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-662-52993-5_2
https://doi.org/10.1007/978-3-662-52993-5_2
https://doi.org/10.1007/s00145-001-0014-7
https://doi.org/10.46586/tosc.v2022.i4.1-23
https://doi.org/10.46586/tosc.v2022.i4.1-23
https://doi.org/10.1007/978-3-662-43933-3_19

Ganyuan Cao 23

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking
and provably repairing the ssh authenticated encryption scheme: A case
study of the encode-then-encrypt-and-mac paradigm. ACM Transactions on
Information and System Security (TISSEC), 7(2):206–241, 2004.

[BMM+15] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and
Björn Tackmann. Robust authenticated encryption and the limits of symmetric
cryptography. In Jens Groth, editor, 15th IMA International Conference on
Cryptography and Coding, volume 9496 of LNCS, pages 112–129. Springer,
Heidelberg, December 2015. doi:10.1007/978-3-319-27239-9_7.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Rela-
tions among notions and analysis of the generic composition paradigm. In Tat-
suaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 531–
545. Springer, Heidelberg, December 2000. doi:10.1007/3-540-44448-3_41.

[BPS15] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Rec-
onciling AE robustness notions. In Jens Groth, editor, 15th IMA International
Conference on Cryptography and Coding, volume 9496 of LNCS, pages 94–111.
Springer, Heidelberg, December 2015. doi:10.1007/978-3-319-27239-9_6.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to
exploit nonces or redundancy in plaintexts for efficient cryptography. In Tat-
suaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 317–
330. Springer, Heidelberg, December 2000. doi:10.1007/3-540-44448-3_24.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006. doi:10.1007/11761679_25.

[CHVV03] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Pass-
word interception in a SSL/TLS channel. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 583–599. Springer, Heidelberg, August 2003.
doi:10.1007/978-3-540-45146-4_34.

[DP07] Jean Paul Degabriele and Kenneth G. Paterson. Attacking the IPsec standards
in encryption-only configurations. In 2007 IEEE Symposium on Security
and Privacy, pages 335–349. IEEE Computer Society Press, May 2007. doi:
10.1109/SP.2007.8.

[DP10] Jean Paul Degabriele and Kenneth G. Paterson. On the (in)security of IPsec
in MAC-then-encrypt configurations. In Ehab Al-Shaer, Angelos D. Keromytis,
and Vitaly Shmatikov, editors, ACM CCS 2010, pages 493–504. ACM Press,
October 2010. doi:10.1145/1866307.1866363.

[Fei73] Horst Feistel. Cryptography and computer privacy. Scientific american,
228(5):15–23, 1973.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-
encryption AEZ and the problem that it solves. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 15–
44. Springer, Heidelberg, April 2015. doi:10.1007/978-3-662-46800-5_2.

[Hou09] S. Housley. Cryptographic Message Syntax (CMS). RFC 5652, IETF, Septem-
ber 2009. https://datatracker.ietf.org/doc/html/rfc5652#section-6.
3.

https://doi.org/10.1007/978-3-319-27239-9_7
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-319-27239-9_6
https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.1109/SP.2007.8
https://doi.org/10.1109/SP.2007.8
https://doi.org/10.1145/1866307.1866363
https://doi.org/10.1007/978-3-662-46800-5_2
https://datatracker.ietf.org/doc/html/rfc5652#section-6.3
https://datatracker.ietf.org/doc/html/rfc5652#section-6.3

24 A Characterization of AE Robustness

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46.
Springer, Heidelberg, August 2002. doi:10.1007/3-540-45708-9_3.

[Mau11] Ueli Maurer. Constructive cryptography – a new paradigm for security defini-
tions and proofs. In S. Moedersheim and C. Palamidessi, editors, Theory of
Security and Applications (TOSCA 2011), volume 6993 of Lecture Notes in
Computer Science, pages 33–56. Springer-Verlag, 4 2011.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag
size does matter: Attacks and proofs for the TLS record protocol. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 372–389. Springer, Heidelberg, December 2011. doi:
10.1007/978-3-642-25385-0_20.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages 196–205. ACM
Press, November 2001. doi:10.1145/501983.502011.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-
shmi Atluri, editor, ACM CCS 2002, pages 98–107. ACM Press, November
2002. doi:10.1145/586110.586125.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment
of the key-wrap problem. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 373–390. Springer, Heidelberg, May / June 2006.
doi:10.1007/11761679_23.

[Shr04] Tom Shrimpton. A characterization of authenticated-encryption as a form of
chosen-ciphertext security. Cryptology ePrint Archive, Report 2004/272, 2004.
https://eprint.iacr.org/2004/272.

[Vau02] Serge Vaudenay. Security flaws induced by CBC padding - applications to
SSL, IPSEC, WTLS... In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 534–546. Springer, Heidelberg, April / May 2002.
doi:10.1007/3-540-46035-7_35.

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1145/501983.502011
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/11761679_23
https://eprint.iacr.org/2004/272
https://doi.org/10.1007/3-540-46035-7_35

Ganyuan Cao 25

A Detailed Proofs

A.1 Proof of Lemma 2

G0 G1 G2

procedure Initalize

1 : K ←$ K
2 : i← 0

3 : 1 : for (N, A, ℓ) ∈ N ×AD × N do

2 : π̃N,A ←$ P̃ℓ

procedure Enc(A, M, τ)
1 : i← i + 1

2 : C ← ẼK;(i,A)(M ||0τ)

3 : C ← π̃i,A(M ||0τ)

4 : C ←$ {0, 1}|M|+τ

5 : return C

Adversary BEnc

procedure
1 : i← 0

2 : b← AEnc∗
(·)

3 : return b

procedure Enc∗(A, M, τ)
1 : i← i + 1
2 : C ← Enc((i, A), M ||0τ)
3 : return C

Figure 5: Left: Games G0 – G2 for proof of Lemma 2. Dot-boxed code is exclusive to G1
and Frame-boxed code is exclusive to G2. Right: P̃RP adversary B for proof for proof of
Lemma 2.

Proof. We consider three games G0 – G2 as in Figure 5 and we use a counter i as nonce. In
G0, the encryption is done with the tweakable VIL cipher Ẽ and the oracle first appends
τ zeros after M and returns ẼK;(i,A)(M ||0τ) as output. In G1, the oracle samples a
tweakable random permutation π̃ and return π̃i,A(M ||0τ) as output. In G2, the oracles
sample a bitstring uniformly at random from {0, 1}|M |+τ and returns it as output. Then
we have that

AdvIND-CPA
Π (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)]

We can then construct a P̃RP adversary B from A as in Figure 5. We construct the
simulated encryption oracle Enc∗ for A such that for each encryption query made by A,
we let B append τ zeros after it and forward it to B’s oracle Enc, then B forwards the
response from Enc to A. We then let B return the same b that A returns. We then have
that

AdvP̃RP
Ẽ

(B) = Pr[G0(A)]− Pr[G1(A)]
Since we use counter for the nonce and we assume that counter does not repeat, we

know that the tweak never repeats, following Lemma 1, we have that

Pr[G1(A)]− Pr[G2(A)] = 0

Finally, we have that

AdvIND-CPA
Π (A) = AdvP̃RP

Ẽ
(B)

26 A Characterization of AE Robustness

A.2 Proof of Lemma 3

G0 G1

procedure Initalize
1 : K ←$ K
2 : i← 0
3 : j ← 0

4 : 1 : for (N, A, ℓ) ∈ N ×AD × N do

2 : π̃N,A ←$ P̃ℓ

5 : sync← 1
6 : win← 0
7 : C← []

procedure Enc(A, M, τ)
1 : i← i + 1

2 : C ← ẼK;(i,A)(M ||0τ)

3 : C ← π̃i,A(M ||0τ)

4 : C[i]← (A, C, τ)
5 : return C

procedure Dec(A, C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A, C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return

6 : M ′ ← Ẽ−1
K;(j,A)(C)

7 : M ′ ← π̃−1
j,A(C)

8 : ℓ← |M ′|
9 : if M ′[ℓ− τ, ℓ] = 0τ then

10 : win← 1
11 : M ←M ′[0, ℓ− τ − 1]
12 : return M

13 : return ⊥

procedure Finalize
1 : return win

Figure 6: Games G0 – G1 for proof of Lemma 3. Dot-boxed code is exclusive to G1.

Proof. We consider two games G0 and G1 as in Figure 6 for the proof. In G0, A’s queries
are answered with Ẽ and Ẽ−1 respectively. In game G1, the oracle samples a tweakable
random permutation and answer A’s query with π̃ and π̃−1 respectively. We then have
that

AdvINT-sf-CTXT
Π (A) = Pr[G0(A)⇒ 1]− Pr[G1(A)⇒ 1]

+ Pr[G1(A)⇒ 1]

Note that we can then construct a ±̃PRP adversary B as described in Figure 7 against
the tweakable VIL cipher Ẽ with A as subroutine. We define the simulated oracle Enc∗ for
A such that for each A’s encryption query, B first appends the τ zeros after the message
then forwards it to its oracle Enc, and returns the result that B obtains from Enc to A.
Similarly, we define the simulated oracle Dec∗ for A such that for each A’s decryption
query, B returns ̸⊥ to A if it is in-order. Otherwise, B forwards the query to its oracle
Dec. With the response, B checks if it ends with τ zeros and return ⊥ or the plaintext
accordingly. If A makes a valid forgery, then B returns 0, otherwise returns 1. We have
that

Adv±̃PRP
Ẽ

(B) = Pr[G0(A)⇒ 1]− Pr[G1(A)⇒ 1]

Now we bound the probability that A wins in G1. We consider two cases of A’s queries.
In first case, A queries a tuple (A, C, τ) that is the output of the oracle Enc. In this case,
A has to make an out-of-order query, which means that the counter has been updated and
a new random permutation will be used to decipher. Note that A wins if the deciphered

Ganyuan Cao 27

Adversary BEnc,Dec

procedure
1 : i← 0
2 : j ← 0
3 : sync← 1
4 : win← 0
5 : C← []

6 : Run AEnc∗,Dec∗

7 : if win = 1 then
8 : return 0
9 : return 1

procedure Enc∗(A, M, τ)
1 : i← i + 1
2 : C ← Enc((i, A), M ||0τ)
3 : C[i]← (A, C, τ)
4 : return C

procedure Dec∗(A, C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A, C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return
6 : M ′ ← Dec((j, A), C)
7 : ℓ← |M ′|
8 : if M ′[ℓ− τ, ℓ] = 0τ then
9 : win← 1

10 : M ←M ′[0, ℓ− τ − 1]
11 : return M

12 : return ⊥

Figure 7: ±̃PRP adversary B for proof of Lemma 3.

bitstring ends with τ zeros, which is of probability q
2τ . In the other case, (A, C, τ) has

never been an output from Enc, then C is valid only if C deciphers to a bitstring with τ
ending zeros with a random permutation, which is the same as the first case. Thus we
have that

Pr[G1(A)⇒ 1] ≤ q

2τ

Finally, we have that

AdvINT-sf-CTXT
Π (A) ≤ Adv±̃PRP

Ẽ
(B) + q

2τ
.

A.3 Proof of Lemma 4
Proof. We consider three games G0 – G2 as in Figure 8 for the proof. In G0, A’s queries
are answered with Ẽ and Ẽ−1 respectively. In G1, A’s queries are answered with π̃ and
π̃−1 respectively. In game G2, a bitstring Mλ is sampled uniformly at random of length
|M ′| and the oracle Leak returns (Mλ,⊥) to A. However, we still answer A’s encryption
and decryption query with π̃ and π̃−1 respectively. We have that

AdvIND-sf-ERR2
Π (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)]

Now we show that we can construct an ±̃PRP adversary B as in Figure 9. For A’s
encryption and decryption queries, we can construct simulated oracles Enc∗ and Dec∗ as
described in proofs of Lemma 2 and 3. For the leakage query, B forwards the ciphertext
queried by A to its oracle Dec. Then B returns ⊤ if it is a valid ciphertext, and otherwise

28 A Characterization of AE Robustness

G0 G1 G2

procedure Initalize
1 : K ←$ K
2 : i← 0
3 : j ← 0

4 : 1 : for (N, A, ℓ) ∈ N ×AD × N do

2 : π̃N,A ←$ P̃ℓ

5 : sync← 1
6 : flag← ()
7 : C← []

procedure Leak(A, C, τ)
1 : if j > i ∨ C ̸= C[j]
2 : sync← 0
3 : if sync = 1 ∨ flag = (A, C, τ) then
4 : return
5 : flag← (A, C, τ)
6 : M ′ ← Ẽ−1

K;(j,A)(C)

7 : M ′ ← π̃−1
j,A(C)

8 : if M ′[|M ′| − τ, |M ′|] = 0τ then
9 : return ⊤

10 : 1 : Mλ ←$ {0, 1}|M′|

2 : return (Mλ,⊥)

11 : return (M ′,⊥)

procedure Enc(A, M, τ)
1 : i← i + 1

2 : C ← ẼK;(i,A)(M ||0τ)

3 : C ←$ π̃i,A(M ||0τ)

4 : C[i]← (A, C, τ)
5 : return C

procedure Dec(A, C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A, C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return

6 : M ′ ← Ẽ−1
K;(j,A)(C)

7 : M ′ ← π̃−1
j,A(C)

8 : flag← ()
9 : if M ′[|M ′| − τ, |M ′|] = 0τ then

10 : M ←M ′[0, |M ′| − τ − 1]
11 : return M

12 : return ⊥

Figure 8: Game G0 – G2 for the proof of Lemma 4. Dot-boxed code is exclusive to G1.
Frame-boxed code is exclusive to G2. Doubly-boxed code is for both G1 and G2.

returns (M ′,⊥) to A wherer M ′ is the deciphered bitstring. We let B return the same bit
b that A returns. We then have that

Adv±̃PRP
E (B) = Pr[G0(A)]− Pr[G1(A)].

Consider the behaviors of G1 and G2 are identical unless A’s query yields ⊤. To see
this, we assume the counter does not repeat, and by Lemma 1, the behaviors of G1 and
G2 are the same when ⊤ is not output. Now suppose that a tuple (A, C, τ) queried to
Leak has been the output from Enc. Since A has to make an out-of-order query, a new
random permutation will be used to decipher C, the probability that C deciphers to a
bitstring ending with τ zeros is at most q

2τ . On the other hand, if (A, C, τ) has not been
an output from Enc, the probability that C deciphers to a valid plaintext with a new
random permutation is at most q

2τ , which is the same case. Thus we have that

Pr[G1(A)]− Pr[G2(A)] ≤ q

2τ

Ganyuan Cao 29

Adversary BEnc,Dec

procedure
1 : i← 0
2 : j ← 0
3 : sync← 1
4 : flag← ()
5 : C← []

6 : b← AEnc∗,Dec∗,Leak∗
(·)

7 : return b

procedure Leak(A, C, τ)
1 : if j > i ∨ C ̸= C[j]
2 : sync← 0
3 : if sync = 1 ∨ flag = (A, C, τ) then
4 : return
5 : flag← (A, C, τ)
6 : M ′ ← Dec((j, A), C)
7 : if M ′[|M ′| − τ, |M ′|] = 0τ then
8 : return ⊤
9 : return (M ′,⊥)

procedure Enc∗(A, M, τ)
1 : i← i + 1
2 : C ← Enc((i, A), M ||0τ)
3 : C[i]← (A, C, τ)
4 : return C

procedure Dec∗(A, C, τ)
1 : j ← j + 1
2 : if j > i ∨ (A, C, τ) ̸= C[j] then
3 : sync← 0
4 : if sync = 1 then
5 : return
6 : M ′ ← Dec((j, A), C)
7 : flag← ()
8 : if M ′[|M ′| − τ, |M ′|] = 0τ then
9 : M ←M ′[0, |M ′| − τ − 1]

10 : return M

11 : return ⊥

Figure 9: ±̃PRP adversary B for the proof of Lemma 4.

Finally, we have that

AdvIND-sf-ERR2
Π (A) ≤ Adv±̃PRP

Ẽ
(B) + q

2τ

.

A.4 Proof of Lemma 5
Proof. We need to show both the left and the right segments are indistinguishable from a
random bitstring. We consider the games G0 – G3 as in Figure 10. We have that

AdvIND-CPA
Ψ (A) =

2∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)]

In G1, we replace CL with a random bitstring of the same length. In G2, we replace the
tweakable cipher Ẽ with a tweakable random permutation π̃. In G3, we return a random
bitstring of the length |CL||CR|.

Observe when the universal hash function H produces a repeated nonce, the adversary
can change one of N, ML and A and query again with MR, which yields the same CR

as in a previous query. Otherwise, the indistinguishability of CL depends on IND-CPA
security of the encryption scheme Π. Then we can construct an IND-CPA adversary B1 as
in Figure 10 against Π. By Union Bound, we have that

Pr[G0(A)]− Pr[G1(A)] ≤ AdvIND-CPA
Π (B1) + ϵ.

30 A Characterization of AE Robustness

G0
�� ��G1 G2 G3

procedure Initalize

1 : KE , KH , KM ←$ K

2 : 1 : for (h, ℓ) ∈ H× N do

2 : π̃h ←$ P̃ℓ

3 : Q ← ∅

procedure Enc(N, A, M, τ)
1 : if (N, A, M, τ) ∈ Q then
2 : return
3 : ML||MR ←M

4 : N ′ ← H1KH
(N, MR, A, τ)

5 : CL ← Π.EN′
KE

(ML)

6 :
�� ��CL ←$ {0, 1}|ML|

7 : M∗
R ← Encode(MR)

8 : M ′
R ←M∗

R||0τ

9 : h← H2KH
(CL, A, τ)

10 : CR ← ẼKM ;h(M ′
R)

11 : CR ← π̃h(M ′
R)

12 : C ←$ {0, 1}|M′
R|

13 : Q ← Q∪ {(N, A, M, τ)}
14 : return CL||CR

Adversary BEnc
1 BEnc

2

procedure
1 : KH , KM ←$ K

2 : KH ←$ K

3 : Q ← ∅

4 : b← AEnc∗
(·)

5 : return b

procedure Enc∗(N, A, M, τ)
1 : if (N, A, M, τ) ∈ Q then
2 : return
3 : ML||MR ←M

4 : N ′ ← H1KH
(N, MR, A, τ)

5 : CL ← Enc(N ′, ML)

6 : CL ←$ {0, 1}|ML|

7 : M∗
R ← Encode(MR)

8 : M ′
R ←M∗

R||0τ

9 : h← H2KH
(CL, A, τ)

10 : CR ← ẼKM ;h(M ′
R)

11 : CR ← Enc(h, M ′
R)

12 : Q ← Q∪ {(N, A, M, τ)}
13 : return CL||CR

Figure 10: Left: Games G0 – G3 for proof of Lemma 5. Oval-boxed code is exclusive
to G1. Dot-boxed code is exclusive to G2. Frame-boxed code is exclusive to G3. Right:
IND-CPA adversary B1 and P̃RP adversary B2 for proof of Lemma 5. Frame-boxed code
is executed if B1 and dot-boxed code is executed if B2. Unboxed code is for both of the
adversaries.

It leaves us to show that CR is also indistinguishable from a random bitstring. We first
construct a P̃RP adversary B2 as in Figure 10. We define the simulated oracle Enc∗ for
A such that for each query of A, we let B sample a random bitstring CR of length |MR|,
then B prepends τ zeros before ML and queries its oracle Enc to get CL. Then B returns
CL||CR to A as response. We let B returns the same bit b returned by A. Thus we have
that

AdvP̃RP
Ẽ

(B2) = Pr[G1(A)]− Pr[G2(A)]

Now following Lemma 1, we know that the behaviors of G2 and G3 are identical unless
a tweak repeats. Thus we provide a rough bound between G2 and G3 by ϵ where ϵ is the
probability that the universal hash function H produces a repeated tweak h.

Finally, we have that

AdvIND-CPA
Ψ (A) ≤ AdvIND-CPA

Π (B1) + AdvP̃RP
Ẽ

(B2) + 2ϵ.

Ganyuan Cao 31

A.5 Proof of Lemma 6

G0 G1

procedure Initalize
1 : KE , KH ←$ K

2 : 1 : for (h, ℓ) ∈ H× N do

2 : π̃h ←$ P̃ℓ

3 : win← 0
4 : Qm,Qe ← ∅

procedure Enc(N, A, M, τ)
1 : if (N, A, M, τ) ∈ Qm then
2 : return
3 : ML||MR ← (M)
4 : N ′ ← H1KH

(N, MR, A, τ)

5 : CL ← Π.EN′
KE

(ML)
6 : M ′

R ← Encode(MR)||0τ

7 : h← H2KH
(CL, A, τ)

8 : CR ← ẼKM ;h(M ′
R)

9 : CL ← π̃h(M ′
R)

10 : Qm ← Qm ∪ {(N, A, M, τ)}
11 : Qe ← Qe ∪ {(N, A, CL||CR, τ)}
12 : return CL||CR

procedure Dec(A, C, τ)
1 : if (N, A, C, τ) ∈ Qe then
2 : return
3 : CL||CR ← C

4 : h← H2KH
(CL, A, τ)

5 : M ′
R ← Ẽ−1

KM ;h(CR)

6 : M ′
R ← π̃−1

h (CR)

7 : ℓ← |M ′
R|

8 : M∗
R ←M ′

R[0..(ℓ− τ − 1)]
9 : pad←M ′

R[(ℓ− τ)..(ℓ− 1)]
10 : if pad ̸= 0τ∨
11 : Decode(M∗

R) = ⊥ then
12 : return ⊥
13 : MR ← Decode(M∗

R)
14 : N ′ ← H1KH

(N, MR, A, τ)

15 : ML ← Π.DN′
KE

(CL)
16 : Qd ← Qd ∪ {(N, A, C, τ)}
17 : return ML||MR

procedure Finalize
1 : return win

Figure 11: Games G0 – G1 for proof of Lemma 6. Dot-boxed code is exclusive to G1.

Proof. Note that the authenticity of the scheme relies on CR. We consider games G0 –
G1 in Figure 11 where the tweakable cipher Ẽ is used in G0 and a tweakable random
permutation π̃ is used in G1. We have that

AdvINT-CTXT
Ψ (A) = Pr[G0(A)⇒ 1]− Pr[G1 ⇒ 1]

+ Pr[G1(A)⇒ 1]

We can construct a ±̃PRP adversary B as in Figure 12. We define the simulated
encryption oracle Enc∗ for A such that for each encryption query of A, we let B use the
encryption scheme Π to first encrypt ML. Then B pads τ zeros after MR and queries
its encryption oracle with the resulting string to get CR. Then B returns CL||CR as the
ciphertext to A. Similarly we define the simulated decryption oracle Dec∗ for A such
that for A’s decryption query, we let B first split the ciphertext into CL and CR. Then B
queries its decryption oracle to obtain M ′

R. Depending on if M ′
R ends with τ zeros and can

32 A Characterization of AE Robustness

Adversary BEnc,Dec

procedure
1 : KE , KH ←$ K
2 : win← 0
3 : Qm,Qe ← ∅

4 : Run AEnc∗,Dec∗
(·)

5 : if win = 1 then
6 : return 0
7 : return 1

procedure Enc∗(N, A, M, τ)
1 : if (N, A, M, τ) ∈ Qm then
2 : return
3 : ML||MR ←M

4 : N ′ ← HKH (N, MR, A, τ)

5 : CL ← Π.EN′
KE

(ML)
6 : M ′

R ← Encode(ML)||0τ

7 : h← HKH (CL, A, τ)
8 : CR ← Enc(h, M ′

R)
9 : Qm ← Qm ∪ {(N, A, M, τ)}

10 : Qe ← Qe ∪ {(N, A, CL||CR, τ)}
11 : return CL||CR

procedure Dec∗(N, A, C, τ)
1 : if (N, A, C, τ) ∈ Qe then
2 : return
3 : CL||CR ← C

4 : h← H1KH
(CL, A, τ)

5 : M ′
R ← Dec(h, CR)

6 : ℓ← |M ′
R|

7 : M∗
R ←M ′

R[0..(ℓ− τ − 1)]
8 : pad←M ′

R[(ℓ− τ)..(ℓ− 1)]
9 : if pad ̸= 0τ∨

10 : Decode(M∗
R) = ⊥ then

11 : return ⊥
12 : MR ← Decode(M∗

R)
13 : N ′ ← H1KH

(N, MR, A, τ)

14 : ML ← Π.DN′
KE

(CL)
15 : Qd ← Qd ∪ {(N, A, C, τ)}
16 : return ML||MR

Figure 12: ±̃PRP adversary B for proof of Lemma 6. Here Enc∗ and Dec∗ are simulated
oracles for the INT-CTXT adversary A.

be decoded successfully, we let B returns ⊥ or continues the decryption with Π. Finally,
we let B returns 0 if A makes a valid forgery and let B returns 1 otherwise. We then have
that

Adv±̃PRP
Ẽ

(B) = Pr[G0(A)⇒ 1]− Pr[G1(A)⇒ 1]

We now consider when A wins in G1. We first consider two cases when a tweak used
in decryption matches with a tweak used in a previous encryption query. Let C = CL||CR

be the result of that previous encryption query. In the first case, a collision happens with
the hash function H, the the adversary can simply reuse CR and change one of CL, N and
A to provoke a collision in H, which is of probability at most ϵ. On the other hand, if A
reuses (CL, A, τ), then A has to query with C ′

R different from CR. In this case, C ′
R has to

be deciphered with a random permutation to a bitstring that ends with τ zeros and can
be decoded successfully, which happens with probability less than δq

2τ .
Otherwise if each tweak used in decryption is distinct from that in encryption queries,

we then have a fresh random permutation for every decryption query. Then A wins the
game only when the ciphertext deciphers to a bitstring that ends with τ zeros and can be
decoded successfully, which is of probability at most δq

2τ . Thus we have that

Pr[G1(A)⇒ 1] ≤ q

2τ
+ ϵ

Ganyuan Cao 33

Finally, we have that

AdvINT-CTXT
Ψ (A) ≤ Adv±̃PRP

Ẽ
(B) + q

2τ
+ ϵ.

A.6 Proof of Lemma 7

Proof. We consider three games G0 – G2 as in Figure 13. In G0, the tweakable cipher Ẽ
is used. In G1, the tweakable random permutation π̃ is used. In G2, we sample a random
bitstring Mλ of the length |M ′

L| and returns that along with ⊥ as error message to the
adversary. We have that

AdvIND-ERR2
Ψ (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)]

Similarly, we can construct a ±̃PRP adversary against Π̃ with A as subroutine as in
Figure 14. For A’s encryption and decryption queries, we follow the similar constructions
of the simulated oracles Enc∗ and Dec∗ as in the proof of Lemma 6. For A’s query to
Leak, we let B query its oracle Dec to first decipher CR. Then if CR deciphers to a
bitstring M ′

R that ends with τ zeros and can be decoded successfully, then B returns ⊤ to
A. Otherwise, B returns the tuple (M ′

R,⊥) to A. We have that

Adv±̃PRP
Ẽ

(B) = Pr[G0(A)]− Pr[G1(A)]

We now bound the probability Pr[G1(A)]− Pr[G2(A)]. Observe that the leakage only
concerns M ′

R. If each tweak used in Leak is distinct, then adversary has 0 advantage in
distinguishing between M ′

R and Mλ following Lemma 1. Otherwise, if a tweak repeats, then
the oracle in the real world will never output a repeated bitstring since it is a permutation.
Then the adversary may look for repeated outputs to distinguish the ideal world from the
real world. This happens then the oracle in the ideal world samples the same bitstring,
which happens with probability at most q2−q

2|M′
R

| ≤
q2

2τ . Thus we have that

Pr[G1(A)]− Pr[G2(A)] ≤ q2

2τ

Finally, we have that

AdvIND-ERR2
Ψ (A) ≤ Adv±̃PRP

Ẽ
(B) + q2

2τ

34 A Characterization of AE Robustness

G0 G1 G2

procedure Initalize
1 : KE , KM , KH ←$ K

2 : 1 : for (N, A, ℓ) ∈ N ×AD × N do

2 : π̃N,A ←$ P̃ℓ

3 : Qm,Qe,Ql ← ∅

procedure Leak(N, A, C, τ)
1 : if (N, A, C, τ) ∈ Qe ∪Qd ∪Ql then
2 : return
3 : Ql ← Ql ∪ {(N, A, C, τ)}
4 : CL||CR ← C

5 : h← H2KH
(CL, A, τ)

6 : M ′
R ← Ẽ−1

KM ;h(CR)

7 : M ′
R ← π̃−1

h (CR)

8 : ℓ← |M ′
R|

9 : M∗
R ←M ′

R[0..(ℓ− τ − 1)]
10 : pad←M ′

R[(ℓ− τ)..(ℓ− 1)]
11 : if pad = 0τ∧
12 : Decode(M∗

R) ̸= ⊥ then
13 : return ⊤

14 : 1 : Mλ ←$ {0, 1}|M′
R|

2 : return (Mλ,⊥)

15 : return (M ′
R,⊥)

procedure Enc(N, A, M, τ)
1 : if (N, A, M, τ) ∈ Qm then
2 : return
3 : ML||MR ←M

4 : N ′ ← H1KH
(N, MR, A, τ)

5 : CL ← Π.EN′
KE

(ML)
6 : M ′

R ← Encode(ML)||0τ

7 : h← H2KH
(CL, A, τ)

8 : CR ← ẼKM ;h(M ′
R)

9 : CL ← π̃h(M ′
R)

10 : Qm ← Qm ∪ {(N, A, M, τ)}
11 : Qe ← Qe ∪ {(N, A, CL||CR, τ)}
12 : return CL||CR

procedure Dec(N, A, C, τ)
1 : if (N, A, C, τ) ∈ Qe then
2 : return
3 : CL||CR ← C

4 : h← H2KH
(CL, A, τ)

5 : M ′
R ← Ẽ−1

KM ;h(CR)

6 : M ′
R ← π̃−1

h (CL)

7 : ℓ← |M ′
R|

8 : M∗
R ←M ′

R[0..(ℓ− τ − 1)]
9 : pad←M ′

R[(ℓ− τ)..(ℓ− 1)]
10 : if pad ̸= 0τ∨
11 : Decode(M∗

R) = ⊥ then
12 : return ⊥
13 : MR ← Decode(M∗

R)
14 : N ′ ← H1KH

(N, MR, A, τ)

15 : ML ← Π.DN′
KE

(CL)
16 : Qd ← Qd ∪ {(N, A, C, τ)}
17 : return ML||MR

Figure 13: Game G0 – G2 for the proof of Lemma 7. Dot-boxed code is exclusive to G1.
Frame-boxed code is exclusive to G2. Doubly-boxed code is for both G1 and G2.

Ganyuan Cao 35

Adversary BEnc,Dec

procedure
1 : KE , KH ←$ K
2 : Qm,Qe,Ql ← ∅

3 : b← AEnc∗,Dec∗,Leak∗
(·)

4 : return b

procedure Dec∗(N, A, C, τ)
1 : if (N, A, C, τ) ∈ Qe then
2 : return
3 : CL||CR ← C

4 : h← H2KH
(CL, A, τ)

5 : M ′
L ← Dec(h, CR)

6 : ℓ← |M ′
R|

7 : M∗
R ←M ′

R[0..(ℓ− τ − 1)]
8 : pad←M ′

R[(ℓ− τ)..(ℓ− 1)]
9 : if pad ̸= 0τ∨

10 : Decode(M∗
R) = ⊥ then

11 : return ⊥
12 : MR ← Decode(M∗

R)
13 : N ′ ← H1KH

(N, MR, A, τ)

14 : ML ← Π.DN′
KE

(CL)
15 : Qd ← Qd ∪ {(N, A, C, τ)}
16 : return ML||MR

procedure Enc∗(N, A, M, τ)
1 : if (N, A, M, τ) ∈ Qm then
2 : return
3 : (ML, MR)← SplitMsg(M)
4 : N ′ ← H1KH

(N, ML, A, τ)

5 : CR ← Π.EN′
KE

(MR)
6 : M ′

L ← 0τ ||ML

7 : h← H2KH
(CR, A, τ)

8 : Qm ← Qm ∪ {(N, A, M, τ)}
9 : Qe ← Qe ∪ {(N, A, CL||CR, τ)}

10 : CL ← Enc(h, M ′
L)

11 : return CL||CR

procedure Leak∗(N, A, C, τ)
1 : if (N, A, C, τ) ∈ Qe ∪Qd ∪Ql then
2 : return
3 : Ql ← Ql ∪ {(N, A, C, τ)}
4 : CL||CR ← SplitCtx(C, τ)
5 : h← H2KH

(CL, A, τ)
6 : M ′

R ← Dec(h, CR)
7 : ℓ← |M ′

R|
8 : M∗

R ←M ′
R[0..(ℓ− τ − 1)]

9 : pad←M ′
R[(ℓ− τ)..(ℓ− 1)]

10 : if pad = 0τ∧
11 : Decode(M∗

R) ̸= ⊥ then
12 : return ⊤
13 : return (M ′

R,⊥)

Figure 14: ±̃PRP adversary B for proof of Lemma 7. Here Enc∗, Dec∗ and Leak∗ are
simulated oracles for the IND-ERR2 adversary A.

	Introduction
	Background and Motivation
	Related Work
	Our Contribution

	Preliminaries
	Notation
	Game-Based Proof
	Robust Authenticated Encryption (RAE)

	Security Notions
	IND-rCCA Security
	IND-sf-rCCA Security
	Separation and Relations
	Comparison with Existing Notions

	Stateful Security of Encode-then-Encipher
	EtE with Tweakable Cipher
	Proof of Security

	Modification for Robust EEM
	The Construction
	Security

	Conclusion and Future Work
	References
	Detailed Proofs
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

