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Abstract

This paper presents a comprehensive security analysis of the Adh zero-knowledge
proof system, a novel lattice-based, quantum-resistant proof of possession system.
The Adh system offers compact key and proof sizes, making it suitable for real-
world digital signature and public key agreement protocols. We explore its security
by reducing it to the hardness of the Module-ISIS problem and introduce three new
variants: Module-ISIS+, Module-ISIS*, and Module-ISIS**. These constructions
enhance security through variations on chaining mechanisms. We also provide a
reduction to the module modulus subset sum problem under conservative assump-
tions.

Empirical evidence and statistical testing support the zero-knowledge, complete-
ness, and soundness properties of the Adh proof system. Comparative analysis
demonstrates the Adh system’s advantages in terms of key and proof sizes over
existing post-quantum schemes like Kyber and Dilithium.

This paper represents an early preprint and is a work in progress. The core
security arguments and experimental results are present, and formal proofs and
additional analysis are provided. We invite feedback and collaboration from the re-
search community to further strengthen the security foundations of the Adh system
and explore its potential applications in quantum-resistant cryptography.
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1 Introduction1

As the quantum computing era approaches, the imperative for quantum-resilient cryp-2

tographic systems becomes increasingly urgent. The Adh zero-knowledge proof system3

addresses this need by leveraging the hardness of the Module-ISIS problem, offering a4

robust solution designed to withstand future quantum threats.5

This paper explores the Adh zero-knowledge proof system, a novel quantum-resilient6

solution based on the hardness of the Module-ISIS problem. We introduce key innova-7

tions such as nested Number Theoretic Transforms (NTT), extreme rejection sampling,8
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and novel chaining constructions that collectively enhance security without increasing9

communication overhead.10

Nested NTT operations enhance polynomial arithmetic efficiency and security through11

increased confusion and diffusion, akin to mid-round modulus switching. Combined,12

along with our novel chaining constructions, forms a dense lattice structure that robustly13

defends against diverse attacks.14

A key strength of the Adh system lies in its extensive use of rejection sampling of 015

value coefficients. By eliminating zero coefficients in the lattice basis, the Adh system16

constructs a full lattice structure with high density. This property significantly enhances17

attack resilience, as the absence of sparsity renders many common lattice reduction tech-18

niques less effective. The complete lattice structure ensures that the system is as reduced19

as possible, making it challenging for adversaries to exploit vulnerabilities.20

The core computational hardness of the Adh system is based on the Module-ISIS21

problem, which requires finding an exact solution to the equation t = A · z mod q for22

a target vector t. This problem is considered harder than other approximation-based23

lattice problems due to the additional constraint of matching an exact target vector.24

We introduce three new variants of the Module-ISIS problem and provide reductions25

from these variants to the original Module-ISIS problem. Additionally, by relaxing the26

constraint of multiplication to addition, we establish a reduction to the Module Modulus27

Subset Sum Problem, further strengthening the security argument of the Adh system.28

Table 1 presents the key parameters and estimated security strengths of the Adh29

system for two different dimensions, n = 128 and n = 256.

Parameter n=128 n=256
Public Key Size 192 bytes 384 bytes
Secret Key Size 192 bytes 384 bytes
Signature/Key Agreement Proof Size 192 bytes 384 bytes
Original Estimate Bits of Security 112 bits 260 bits
Demonstrated Bits of Security 331 bits 673 bits
Theoretical Max Bits of Security 448 bits 1040 bits

Table 1: Adh system parameters and security strengths for different dimensions.

30

The Adh system achieves compact key and proof sizes, with 192 bytes for n = 128 and31

384 bytes for n = 256. While the original calculated hardness was 112 bits and 260 bits32

for n = 128 and n = 256, respectively, our analysis demonstrates a significant increase33

after applying the techniques presented in this paper. The theoretical estimates for the34

new constructions reach 448 bits for n = 128 and 1040 bits for n = 256. Remarkably,35

our experimental results indicate bit security strengths of 331 bits and 673 bits for n =36

128 and n = 256, respectively. The impact of more accurate BKZ cost estimates on37

bit security remains an open research question. Nonetheless, this work showcases the38

effectiveness of the full lattice structure and the chaining mechanism employed in the39

Adh system.40

The comparison of the Adh system with the widely-recognized post-quantum crypto-41

graphic schemes Kyber (ML-KEM) and Dilithium (ML-DSA) highlights the significant42

advantages of the Adh system in terms of key and ciphertext/signature sizes. The Adh43

system achieves substantially smaller public keys, secret keys, and ciphertexts/signatures44

compared to both Kyber and Dilithium at their respective security levels.45
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Metric Adh-128 Adh-256 ML-KEM1 ML-KEM5 ML-DSA3 ML-DSA5

PK 192B 384B 736B 1440B 1472B 2592B

SK 192B 384B 1632B 3168B 4000B 4864B

CT/SIG 192B 384B 768B 1568B 3293B 4595B

BitSec 331 bits 673 bits 118 bits 256 bits 192 bits 256 bits

Experimental Experimental Proven Proven Proven Proven

Table 2: Comparison of Adh, Kyber, and Dilithium parameters and security strengths.

For example, at a demonstrated bit security level of 331 bits, the Adh-128 variant46

requires only 192 bytes for each of its public key, secret key, and ciphertext/signature.47

In contrast, Kyber-512, which offers a proven bit security level of 118 bits, has a public48

key size of 736 bytes, a secret key size of 1632 bytes, and a ciphertext size of 768 bytes.49

Similarly, Dilithium-3, with a proven bit security level of 192 bits, has a public key size50

of 1472 bytes, a secret key size of 4000 bytes, and a signature size of 3293 bytes.51

The Adh-256 variant, which demonstrates a bit security level of 673 bits, maintains52

a compact size of 384 bytes for its public key, secret key, and ciphertext/signature. This53

is a remarkable achievement considering that Kyber-1024 and Dilithium-5, which offer54

proven bit security levels of 256 bits, have much larger key and ciphertext/signature sizes.55

The smaller sizes not only lead to reduced storage requirements but also result in im-56

proved efficiency in terms of communication bandwidth and processing overhead. Beyond57

that, smaller key and ciphertext/signature sizes of the Adh system make it an attrac-58

tive candidate for resource-constrained environments, such as embedded systems and IoT59

devices, where memory and bandwidth are limited. Additionally, the reduced sizes can60

lead to faster key generation, encryption, decryption, signing, and verification operations,61

thereby enhancing the overall performance of cryptographic protocols built upon the Adh62

system.63

Furthermore, the compact sizes of the Adh system, combined with its post-quantum64

security, make it a promising solution for future-proofing cryptographic implementations.65

As the threat of quantum computers looms on the horizon, the Adh system offers a66

secure and efficient alternative to traditional cryptographic schemes that are vulnerable67

to quantum attacks. The smaller key and ciphertext/signature sizes also facilitate easier68

migration from classical to post-quantum cryptography, as they minimize the impact on69

existing systems and protocols.70

Thesis 1. The Adh zero-knowledge proof system is secure under the hardness assump-71

tion of the Module-ISIS problem, providing soundness, completeness, and zero-knowledge72

properties.73

2 Slicing into the Variants of the Module-ISIS Prob-74

lem: A Pie Analogy75

In lattice-based cryptography, the Module-ISIS problem and its variants serve as a foun-76

dation for constructing secure cryptographic primitives. To elucidate the differences and77

relationships between the variants described in this paper, we present an analogy based78

on pies. Let us explore the distinct flavors of Module-ISIS, ISIS+, ISIS*, and ISIS**, and79

uncover the complexities that each variant introduces.80
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Consider the Module-ISIS problem as a classic pumpkin pie—homogeneous, consis-81

tent, and unambiguous in its composition. The Module-ISIS problem presents a well-82

defined lattice structure, just as every slice of pumpkin pie offers a uniform taste and83

texture.84

Module-ISIS+ can be thought of as an apple pie, where the filling consists of distinct85

slices of apples, each with its own unique characteristics, yet harmoniously combined86

to form a cohesive whole. Each slice of apple represents an instance of the Module-ISIS87

problem, chained together to create a more intricate composition. The ISIS+ construction88

uses a chaining mechanism, similar to WOTS+, to bind the components of the problem89

together. While each slice is made of apple, each piece of apple represents its own instance90

of the Module-ISIS problem to solve.91

Module-ISIS* can be likened to a mixed berry pie, where the filling is a medley of92

similar yet distinct problems, each with its own secret ingredients. The assortment of93

berries represents the variations in the problem instances while maintaining a relationship94

with the original Module-ISIS problem. The various types of fruit symbolize individual95

instances of the Module-ISIS problem, with the additional constraint of part of the chain96

having a distinct secret key.97

These crustless pie constructions, Module-ISIS+ and ISIS*, can be reduced to well-98

established hard lattice problems. The hardness of these variants is rooted in the under-99

lying hardness of the Module-ISIS problem.100

Now, consider ISIS**. If the previous variants were pies without a crust, ISIS** is101

the golden, flaky crust that elevates the pie to new heights of complexity. The crust102

represents the additional features introduced by ISIS**, such as projection to higher103

dimensions, modular addition, and the inversion back to the input domain. While the104

increased complexity brought by ISIS** is not formally proven in this paper, empirical105

evidence suggests that the pie with crust exhibits a more intricate internal structure.106

The presence of the crust (ISIS**) is unlikely to make the core pie problems easier107

to solve. We conjecture that the added complexity of ISIS** enhances the difficulty of108

the problem, but a formal proof requires further research. The solution to the ”soggy109

bottom” problem remains an open question in the field of lattice-based cryptography.110

The rest of this paper is structured as follows:111

• Preliminary Notations, Definitions and Concepts.112

• A high level overview of the proof system.113

• Problem definitions114

• Security Analysis115

• Reduction to Module-ISIS variants116

• Reduction to Subset Sum117

• Implementation Considerations118

• Experimental Results119

• Performance Analysis120

• Use Cases and Applications121

• Comparative Analysis, Known Problems, Conclusion and Future Work122

• Detailed Appendix123
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3 Preliminaries124

3.1 Notation and Definitions125

Throughout this paper, we use the following notation:126

• Zq: The ring of integers modulo q.127

• Zq[x]: The ring of polynomials over Zq.128

• Rq = Zq[x]/(xn + 1): The quotient ring of polynomials modulo xn + 1, where n is129

a power of 2.130

• a ∈ Rm
q : A vector of m polynomials in Rq.131

• A ∈ Rm×m
q : A matrix of m×m polynomials in Rq.132

• ||a||∞: The infinity norm of a vector a, defined as ||a||∞ = max i|ai|.133

We also define the following terms:134

Definition 1 (Zero Vector). A vector a ∈ Rm
q is called a zero vector if all its coefficients135

are zero.136

Definition 2 (Sparse Vector). A vector a ∈ Rm
q is called a sparse vector if it contains a137

significant number of zero coefficients.138

Definition 3 (Full Vector). A vector a ∈ Rm
q is called a full vector if all its coefficients139

are non-zero.140

Definition 4 (Sparse Lattice). A lattice L is called a sparse lattice if it is generated by141

a basis matrix containing a significant number of zero coefficients.142

Definition 5 (Complete Lattice). A lattice L is called a complete lattice if it is generated143

by a basis matrix containing only non-zero coefficients.144

3.2 Unique Features145

The Adh system incorporates several unique features that distinguish it from other zero-146

knowledge proof systems:147

• Nested NTT Calls: The ZKVolute function used in the Adh system employs148

recursive NTT operations, allowing for efficient polynomial arithmetic, maintaining149

the necessary algebraic structure, while allowing for a diffusive dimensional shift150

and mix operation.151

• Rejection Sampling: The rejection sampling technique is used throughout the152

Adh system to ensure that all the vectors involved are full vectors, eliminating the153

presence of zero coefficients and maintaining a complete lattice structure.154

• Chaining Functions: Adh implements multiple WOTS+ like chaining function155

using number theoretic primitives to amplify hardness of the core module-ISIS156

problem, especially the module-ISIS* instance.157

3.3 Module-ISIS Problem158

The Module-ISIS (Module Inhomogeneous Short Integer Solution) problem is a lattice-159

based cryptographic problem that generalizes the SIS problem[12] to rings. It is defined160

as follows:161
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Definition 6. (Module-ISIS Problem) Given a uniformly random matrix A ∈ Rm×n
q , a162

target vector t ∈ Rm
q , and a predefined bound β, find a non-zero vector z ∈ Rn

q such that:163

A · z = t (mod q)||z||∞ ≤ β (1)

Explanation:164

• Ring Setting: Module-ISIS operates over the ring of polynomials modulo a prime165

q, denoted as Rq. This allows for more compact representations and efficient oper-166

ations compared to standard lattices.167

• Dimensions: The matrix A has dimensions m×n. Typically, Module-ISIS instances168

are set up with more columns than rows (n > m).169

• Hardness Basis: The computational difficulty of the Module-ISIS problem is be-170

lieved to be linked to the worst-case hardness of specific lattice problems over171

module lattices, such as the Shortest Independent Vectors Problem (SIVP) in this172

context.173

• Complexity Comparison: The Module-ISIS problem is considered to be at least174

as hard as the Module-SIS problem. In the Module-SIS problem, the goal is to175

find a short non-zero vector z such that A · z = 0 (mod q), where A is a random176

matrix. In contrast, the Module-ISIS problem requires finding a short non-zero177

vector z such that A · z = t (mod q), where t is a target vector. The additional178

constraint of matching a specific target vector t makes the Module-ISIS problem179

potentially harder than Module-SIS.180

3.4 Number Theoretic Transform (NTT)181

The Number Theoretic Transform (NTT) is a special case of the Discrete Fourier Trans-182

form (DFT) over a finite field. It is widely used in lattice-based cryptography for efficient183

polynomial multiplication. The NTT has the following properties:184

• It is a bijective linear transformation that maps a vector of coefficients to another185

vector of coefficients.186

• It preserves the structure of the polynomial ring, allowing for efficient polynomial187

arithmetic.188

• The forward and inverse NTT operations can be computed in O(n log n) time using189

the Cooley-Tukey algorithm.190

In the Adh system, the NTT plays a crucial role in the construction of the proof and191

verification algorithms, enabling efficient computations and maintaining the necessary192

algebraic structures.193

4 The Adh Zero-Knowledge Proof System194

In this section, we provide a detailed description of the Adh zero-knowledge proof sys-195

tem, including its key generation, proof generation, and verification algorithms. We also196

highlight the unique features of the system, such as nested NTT calls, multiple levels,197

and rejection sampling.198

4.1 Overview199

The Adh system is a lattice-based zero-knowledge proof of possession system that aims to200

provide quantum-resilient security. It leverages the hardness of the Module-ISIS problem201
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and employs a novel construction based on nested NTT operations and rejection sampling202

techniques.203

4.2 Assumptions204

The security of the Adh system relies on the following assumptions:205

Assumption 1 (Module-ISIS Hardness). The Module-ISIS problem is computationally206

hard for the chosen parameters (q, n,m, β). Specifically, no probabilistic polynomial-time207

algorithm can solve the Module-ISIS problem with non-negligible probability.208

Assumption 2 (NTT Invertibility). The NTT operation used in the Adh system is a209

bijective mapping that preserves the structure of the polynomial ring Rq. The inverse210

NTT operation exists and can be efficiently computed.211

Assumption 3 (Rejection Sampling Uniformity). The rejection sampling technique em-212

ployed in the Adh system produces uniformly distributed full vectors and complete lattices,213

eliminating the presence of zero coefficients.214

Assumption 4 (Pseudorandomness of Iterated NTT). The iterated NTT operation, de-215

noted as NTT(i), is assumed to exhibit pseudorandom behavior when applied to uniformly216

random inputs, making it computationally indistinguishable from a truly random function217

when chosen decisionaly from set of possible NTT representations.218

4.3 Key Generation219

The core key generation algorithm of the Adh system proceeds as follows:220

1. Generate a uniformly random secret key sk ∈ Rm
q with coefficients in the range221

[1, q − 1].222

2. Apply rejection sampling to ensure that sk is a full vector.223

3. Generate a uniformly random public challenge pk chal ∈ Rm
q with coefficients in224

the range [1, q − 1].225

4. Apply rejection sampling to ensure that pk chal is a full vector.226

5. Generate a uniformly random public randomness pk rand ∈ Rm
q with coefficients227

in the range [1, q − 1].228

6. Apply rejection sampling to ensure that pk rand is a full vector.229

7. Compute the public key pk as pk = ZKVolute (sk,pk chal,pk rand), where ZKVolute230

is a function that performs nested NTT operations and polynomial arithmetic.231

8. Output the public key pk and the secret key sk.232

9. The storage format of the public key is composed of the public challenge, public233

random and pk and the secret key sk also includes both public values in order to234

regenerate the public key correctly.235

The key generation algorithm ensures that all the vectors involved (secret key, public236

challenge, and public randomness) are full vectors, eliminating the presence of zero coef-237

ficients. This property is crucial for the security and correctness of the Adh system.238

4.4 Proof Generation239

The proof core generation algorithm of the Adh system takes as input the secret key sk,240

a message m, and a public challenge pk chal. It proceeds as follows:241
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1. Generate a uniformly random signature challenge sig chal ∈ Rm
q as a function of m242

via hash to poly with coefficients in the range [1, q − 1].243

2. Apply rejection sampling to ensure that sig chal is a full vector.244

3. Generate a uniformly random signature randomness sig rand ∈ Rm
q with coefficients245

in the range [1, q − 1].246

4. Apply rejection sampling to ensure that sig rand is a full vector.247

5. Compute the proof sig as sig = ZKVolute (sk, sig chal, sig rand).248

6. Output the proof sig along with sig chal and sig rand.249

The proof generation algorithm ensures that the signature challenge and signature ran-250

domness are full vectors, maintaining the complete lattice structure throughout the com-251

putation.252

4.5 Verification253

The verification algorithm of the Adh system takes as input the public key pk, the proof254

sig, the signature challenge sig chal, and the signature randomness sig rand. It proceeds255

as follows:256

1. Compute the left-hand side lhs as lhs = ZKVolute(pk, sig chal, sig rand).257

2. Compute the right-hand side rhs as rhs = ZKVolute(sig,pk chal,pk rand).258

3. Check if lhs = rhs. If true, accept the proof; otherwise, reject it.259

The core verification algorithm leverages the equivariance property of the ZKVolute func-260

tion to check the validity of the proof. The use of nested NTT operations and rejection261

sampling ensures that all the vectors involved in the verification process are full vectors,262

maintaining the complete lattice structure.263

5 Problem Definitions264

5.1 Module-ISIS+ definition265

Definition 7 (Module-ISIS+ Problem). Let k be a positive integer denoting the number266

of chained instances. Given a uniformly random matrix:267

A1 ∈ Rm×m
q (2)

and a set of target vectors268

t1, . . . , tk ∈ Rm
q (3)

find a non-zero vector z ∈ Rm
q such that:269

270

A1 · z = t1 mod q (4)
271

A2 · z = t2 mod q (5)
272

... (6)
273

Ak · z = tk mod q (7)

where Ai = NTT(Ai− 1) · NTT(R) for i = 2, . . . , k, with R being a random matrix274

in Rm×m
q , and ||z||∞ ≤ β.275
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The Module-ISIS+ problem captures the chaining mechanism of the Adh system,276

where each instance is related to the previous one through an NTT operation and a277

random matrix multiplication. The hardness of Module-ISIS+ is based on the hardness278

of the underlying Module-ISIS problem.279

Theorem 1 (Reduction to Module-ISIS+). If there exists a probabilistic polynomial-time280

adversary A that can forge a valid proof in the Adh system with non-negligible probability,281

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-282

ISIS+ problem with non-negligible probability.283

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system284

with non-negligible probability. We construct an algorithm B that uses A to solve the285

Module-ISIS+ problem. Given a Module-ISIS+ instance (A1, t1, . . . , tk, q, n,m, β), B286

proceeds as follows:287

1. B sets up the public parameters of the Adh system using the Module-ISIS+ instance.288

2. B generates the public key pk and sends it to A.289

3. A outputs a forged proof (sig,sig chal,sig rand).290

4. B computes z = sig−sig, where sig is a valid proof generated by B.291

5. If z ̸= 0 and ||z||∞ ≤ 2β, then B outputs z as a solution to the Module-ISIS+292

instance.293

A complete proof is provided in Appendix A.2.294

This reduction shows that if an adversary can forge a valid proof in the Adh system,295

then they can solve the Module-ISIS+ problem, which is assumed to be computationally296

infeasible for appropriately chosen parameters. Therefore, the Adh system is secure297

against forgery attacks, assuming the hardness of Module-ISIS+.298

The reduction to Module-ISIS+ captures the chaining mechanism of the Adh system299

and provides a stronger security guarantee compared to the basic Module-ISIS problem.300

It demonstrates that forging a valid proof in the Adh system is at least as hard as solving301

the Module-ISIS+ problem, which is a generalization of the Module-ISIS problem that302

takes into account the multiple chained instances and the NTT operations used in the303

Adh system.304

5.1.1 Module-ISIS* Problem and Its Application to the Adh System305

In this section, we introduce a variant of the Module-ISIS+ problem, which we call306

Module-ISIS*, and discuss its potential application to the Adh zero-knowledge proof307

system. The Module-ISIS* problem incorporates the use of multiple secret keys, one308

for each instance of the module lattice, to enhance the hardness of the problem against309

lattice reduction and algebraic attacks.310

5.2 Definition of Module-ISIS*311

Definition 8 (Module-ISIS* Problem). Let k be a positive integer denoting the number312

of chained instances. Given uniformly random matrices A1, . . . ,Ak ∈ Rm×m
q and a set of313
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target vectors t1, . . . , tk ∈ Rm
q , find non-zero vectors z1, . . . , zk ∈ Rm

q such that:314

A1 · z1 = t1 mod q

A2 · z2 = t2 mod q

...

Ak · zk = tk mod q

where ti = mask(Ai · zi− 1) · zi for i = 2, . . . , k, with t1 = A1 · z1, and ||zi||∞ ≤ β for315

all i.316

The key difference between Module-ISIS* and Module-ISIS+ is that in Module-ISIS*,317

each instance of the module lattice uses a unique secret key zi, whereas in Module-ISIS+,318

a single secret key z is used to generate the target vector t for the next lattice instance. In319

Module-ISIS*, the target vectors ti are obtained by masking the product Ai · zi− 1 and320

multiplying it with the current secret key zi, creating a chain of dependencies between321

the instances.322

5.2.1 Hardness of Module-ISIS*323

The use of multiple secret keys in Module-ISIS* adds an extra layer of complexity to324

the problem, potentially making it harder to solve using lattice reduction and algebraic325

techniques. Intuitively, an attacker would need to simultaneously recover all the secret326

keys z1, . . . , zk to solve the problem, which could be more challenging than recovering327

a single secret key as in Module-ISIS+. The introduction of multiple secret keys and328

the chaining mechanism in Module-ISIS* creates a new problem structure that requires329

further analysis to establish its hardness formally.330

One potential approach to analyzing the hardness of Module-ISIS* is to consider the331

complexity of solving the problem using lattice reduction algorithms. The use of multiple332

secret keys and the chaining mechanism may increase the dimension and density of the333

lattices involved, making them more resistant to lattice reduction attacks. We provide334

experimental results in subsequent sections.335

5.2.2 Application to the Adh System336

Incorporating the Module-ISIS* problem into the Adh zero-knowledge proof system po-337

tentially enhances its security. Instead of using a single secret key to generate the target338

vector for the next lattice instance, the prover would generate a unique secret key for339

each instance and use them to compute the proofs accordingly. The verification algo-340

rithm would need to be modified to account for the multiple secret keys. The verifier341

would compute the left-hand side and right-hand side of the verification equation using342

the appropriate secret keys and public parameters for each instance.343

While the use of multiple secret keys may increase the storage requirements and344

computational overhead of the Adh system, it could provide an additional layer of security345

against potential attacks. The increased complexity introduced by the Module-ISIS*346

problem may make it more challenging for an adversary to forge proofs or recover the347

secret keys.348

However, it is crucial to carefully analyze the impact of using Module-ISIS* on the349

security of the Adh system. Further research is needed to ensure that the use of multiple350
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secret keys does not introduce any unforeseen vulnerabilities or weaknesses that could be351

exploited by an adversary.352

5.2.3 Future Directions353

The Module-ISIS* problem and its application to the Adh system open up several avenues354

for future research:355

• Investigating the concrete security of the Adh system when instantiated with Module-356

ISIS* with different parameters.357

• Exploring the trade-offs between the increased security and the additional storage358

and computational requirements introduced by the use of multiple secret keys.359

• Studying potential optimizations and efficiency improvements to the Adh system360

when using Module-ISIS*.361

In conclusion, the Module-ISIS* problem presents an interesting variant of Module-ISIS+362

that incorporates the use of multiple secret keys. While it has the potential to enhance the363

security of the Adh zero-knowledge proof system, further research is needed to formally364

establish its hardness, analyze its impact on the system’s security, and explore its practical365

implications. The Module-ISIS* problem opens up new possibilities for designing lattice-366

based cryptographic protocols with enhanced security guarantees, and it warrants further367

investigation by the cryptographic community.368

5.3 Definition of Module-ISIS**369

In this section, we present a refined variant of the Module-ISIS* problem, called Module-370

ISIS**, which incorporates the use of different roots of unity and/or primes at each level of371

the chained instances of recursive NTT transformations. This approach aims to enhance372

the security of the Adh zero-knowledge proof system by introducing distinct algebraic373

structures at each stage. This structure serves to obfuscate the real underlying lattice374

basis underneath it.375

Definition 9 (Module-ISIS** Problem). Let k be a positive integer denoting the number376

of chained instances, and let p i be a prime modulus. Let ω1, . . . , ωk be distinct roots of377

unity for each level. Given uniformly random matrices A1, . . . ,Ak ∈ Rm×m
p and a set of378

target vectors t1, . . . , tk ∈ Rm
p , find non-zero vectors z1, . . . , zk ∈ Rm

p such that:379

A1 · z1 = t1 mod p1

A2 · z2 = t2 mod p2
...

Ak · zk = tk mod pk

where ti = mask(Ai · zi− 1) · zi for i = 2, . . . , k, with t1 = A1 · z1, and ||zi||∞ ≤ β for380

all i.381

In Module-ISIS**, all levels of the chained instances may use the same prime modulus382

p for all pi, ensuring consistency in the problem space. However, each level may also use383

unique, increasing values for pi with an alternative root of unity ωi, introducing distinct384

algebraic structures at each stage.385
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5.3.1 Application to the Adh System386

Incorporating the Module-ISIS** problem into the Adh zero-knowledge proof system387

can potentially enhance its security by making it more challenging for an attacker to388

identify and exploit consistent patterns across the entire chain of instances. The use of389

different roots of unity at each level introduces additional complexity and variability in390

the algebraic structure. To integrate Module-ISIS** into the Adh system, the following391

modifications can be made:392

• Select compatible non-decreasing prime modulus p values for each level i.393

• Assign a different root of unity ωi to each level i.394

• Perform the NTT operations and pointwise multiplications at the first level. Lev-395

els beyond the first perform pointwise addition at each level transformed by the396

corresponding root of unity ωi and the prime modulus pi.397

By using different roots of unity at each level and especially primes, the Adh system can398

potentially benefit from increased security without requiring significant changes to the399

underlying problem space or the verification process. It should be noted that multiple400

levels of the same p value can be composed of NTTs with different ω roots of unity.401

For example ps = [257, 257, 257] with ws = [3, 2, 251] is a valid configuration. Other402

commonly used examples are ps = [257, 257], ws = [3, 3], ps = [257, 65537] and ws =403

[3, 282] or ps = [257, 257, 65537], ws = [3, 3, 501].404

There are a number of combinations, including exotic variants, of working sets of405

parameters whose properties, relationships and impacts are out of scope for this paper406

but will be formally analyzed in subsequent work. These standard values work ’best’407

experimentally.408

5.3.2 Experimental Observations409

The Module-ISIS** problem with different roots of unity and different p values has been410

observed to increase the Shannon entropy of the output proof values consistently and411

significantly. Entropy trends towards maximum.412

Lemma 1. Let L be a lattice-based zero-knowledge proof system with a prover P and a
verifier V. Let A be a public matrix, s a secret vector, and t = As mod q. If for proofs
π0 and π1 generated by P the distributions

(A, t, π0) ≈c (A, t, π1)

are computationally indistinguishable (denoted by ≈c ) and the entropy of π0 is higher413

than the entropy of π1, then it is computationally harder for an adversary to break the414

soundness of L.415

Preliminary testing suggests that incorporating additional transformation levels with416

varying fields in the chain of module-ISIS based problems appears to enhance the Shan-417

non entropy of the final output proof. This observed increase in entropy, which seems to418

approach the maximum theoretical value, potentially indicates an expansion in informa-419

tion complexity, similar to the behavior noted in secure hash functions that transform420

low entropy inputs into high-entropy outputs indistinguishable from random.421

This phenomenon appears to be primarily due to the multi-stage transformation pro-422

cess within the Number Theoretic Transform (NTT) domains. Initially, data is repre-423

sented in lower-dimensional NTT spaces, which is then projected or transformed into a424
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larger, more complex NTT structure. This expanded representation is subsequently inte-425

grated through modular addition, before undergoing an NTT inversion operation. Such426

modular reductions likely amalgamate and obfuscate the dimensional structure and ac-427

tual information content, potentially enhancing the security against attempts to reverse-428

engineer the original input.429

Interestingly, the increase in entropy does not necessarily simplify the process of inver-430

sion. In fact, the transformation process may actually increase the complexity involved431

in deriving the original input. Although no additional secret bits are introduced, the ap-432

parent randomness of the variables makes it more challenging to discern patterns. This433

complexity, which complicates the reversal of the transformation, is akin to the secu-434

rity properties observed in standard hash functions and highlights the robustness of our435

cryptographic approach. Exploring the exact relationship between information loss and436

entropy gain, as influenced by configuration parameters, exceeds the scope of this already437

detailed paper. These aspects will be thoroughly analyzed in a subsequent paper, which438

will focus on formal parameter analysis and its implications.439

5.3.3 Security Considerations440

Conjecture 1 (Security Enhancement in Module-ISIS**). The Module-ISIS** problem,441

which incorporates NTT domain switching, modular addition in projected dimensions, and442

a guaranteed full lattice, potentially mitigates attacks that attempt to reduce the dimension443

of the basis or exploit structural patterns. By increasing the number of projection levels ℓ444

and the rounds of modular addition, the system presents a more significant challenge to445

attackers.446

Justification for the Conjectured Lower Bound: The conjectured lower bound447

on the effectiveness of the proposed technique is based on the following observations:448

• Guaranteed Full Lattice: The property of a guaranteed full lattice, where all449

basis vectors have non-zero coefficients, increases the density and complexity of the450

lattice. This property is expected to make lattice reduction techniques, such as LLL451

and BKZ, less effective in finding short vectors or exploiting the lattice structure.452

The full lattice property ensures that the attacker cannot easily find a sub-lattice453

of lower dimension that can be efficiently reduced.454

• NTT Domain Switching: The NTT domain switching operation, which involves455

changing the algebraic structure and the underlying field, introduces additional ran-456

domness and complexity to the resulting lattice. This operation is likely to disrupt457

the structural patterns and relationships that attackers seek to exploit. By switch-458

ing between different NTT domains, the system makes it harder for attackers to459

identify and utilize the linear dependencies and algebraic weaknesses of the lattice.460

• Modular Addition in Projected Dimensions: The modular addition of the461

proof vectors in projected dimensions further obfuscates the lattice structure and462

increases the entropy of the resulting proofs. This operation mixes the information463

across different dimensions and makes it more challenging for attackers to isolate464

and extract the relevant patterns needed for their attacks. The increased entropy465

and the mixing of information are expected to reduce the success probability of466

algebraic attacks that rely on exploiting structural weaknesses.467

• Iterative Projection and Addition: The proposed technique allows for multiple468

levels of projection (ℓ) followed by rounds of modular addition. As the number of469

projection levels and addition rounds increases, the complexity and randomness of470
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the resulting lattice grow exponentially. This iterative process is expected to make471

lattice reduction attacks progressively more challenging, as the attacker needs to472

navigate through multiple layers of obfuscation and deal with the increased entropy473

at each level.474

The combination of these factors leads to the conjecture that the proposed technique475

can increase the complexity of lattice reduction attacks potentially by 2ℓ and reduce the476

success probability of algebraic attacks by up to 50%. However, it is important to note477

that these estimates are based on intuition based on the ratio of increased sparsity and478

complexity combined with preliminary experimental results. Formal proofs and empirical479

studies are necessary to validate these bounds and quantify the actual effectiveness of the480

technique against specific attack strategies and be presented in future work.481

5.3.4 Future Directions482

The Module-ISIS** problem with different roots and fields presents several avenues for483

future research and exploration in the context of the Adh system:484

• Formal security analysis: Conducting a rigorous security analysis of the various485

Module-ISIS** parameters to establish its hardness and resistance against known486

attacks.487

• Parameter selection: Investigating the optimal choice of prime modulus p and roots488

of unity ω1, . . . , ωk to balance security and efficiency.489

• Constant time implementations.490

• Comparison with alternative approaches: Comparing the security and efficiency of491

the Module-ISIS** approach with other techniques for enhancing the security of492

zero-knowledge proof systems.493

In conclusion, the Module-ISIS** problem with different roots of unity and prime fields494

presents a promising direction for enhancing the security of the Adh zero-knowledge495

proof system. By introducing distinct algebraic structures at each level of the chained496

instances using varied prime moduli and roots of unity, the system can potentially benefit497

from increased complexity and resistance against pattern-based attacks.498

However, further research and analysis are necessary to fully understand the security499

implications practical feasibility of various parameters. Careful consideration of param-500

eter choices, implementation details, and comparative evaluations will help to refine and501

optimize the application of Module-ISIS** to the Adh system.502

6 Security Analysis503

6.1 Reduction of Adh’s Module-ISIS to Module Modulus Sub-504

set Sum505

In this section, we present a reduction of the Adh cryptographic system’s Module-ISIS506

problem to the Module Modulus Subset Sum problem. The goal is to demonstrate that507

forging a signature in the Adh system is at least as hard as solving the Module Modulus508

Subset Sum problem.509

6.1.1 Module-ISIS Problem Instance510

Let A be the Adh cryptographic system with the following parameters:511
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• Dimension: n ∈ 128, 256512

• Infinity norm bound: β = 257513

• Rank of the module: m = 6514

• Prime modulus: q = 257515

• NTT root of unity: ω = 3516

The Module-ISIS problem instance in the Adh system is defined as follows:517

t = A · z mod q (8)

where A ∈ Z qn×m is a public matrix, z ∈ Z qm is a secret vector, and t ∈ Z qn is the518

target vector.519

6.1.2 Mapping to Module Modulus Subset Sum520

To map the Module-ISIS problem to the Module Modulus Subset Sum problem, we521

transition from modular pointwise multiplication522

((t = A ·z mod q))to modular addition ((t = A+z mod q)). This relaxation is justifiable523

under the premise that while multiplication involves more complex arithmetic operations524

than addition, the cryptographic complexity in Number Theoretic Transform (NTT)525

spaces, which the Adh system utilizes, depends significantly on their algebraic properties526

rather than just the arithmetic complexity.527

Justification for Relaxation:528

• In NTT spaces, multiplication can be viewed as repeated addition, which is com-529

putationally more complex; however, the security implications in such algebraic530

structures derive from the properties of the transformations rather than the com-531

plexity of arithmetic operations alone.532

• Subtraction, the direct inverse in additive operations in these fields, does not equiv-533

alently simplify the cryptographic challenge compared to division, the inverse of534

multiplication, which is more complex and not typically feasible in modular arith-535

metic settings.536

6.2 NTT Transformation to Support Reduction to Module Mod-537

ulus Subset Sum538

In our cryptographic framework, the Number Theoretic Transform (NTT) plays a pivotal539

role in enabling efficient computations. The root of unity, ω, in NTT traditionally allows540

for multiplicative operations crucial for cyclic convolution. To facilitate a reduction to541

the Module Modulus Subset Sum problem, we modified the root of unity from ω = 3 to542

ω = 1. This adjustment simplifies the NTT operations as follows:543

Xk =
N−1∑
n=0

xn · ωnk →
N−1∑
n=0

xn · 1nk =
N−1∑
n=0

xn,

where Xk represents the k-th element of the transformed sequence, and xn the n-th544

element of the original sequence. This modification changes the NTT from a framework545

involving multiplicative cyclic convolution to one of simple additive accumulation:546

ωnk = 1nk = 1,

effectively turning the operation into a summation of the input elements.547
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This simplification is crucial for our reduction strategy, where the transformation’s548

complexity is reduced to facilitate a mapping to the Module Modulus Subset Sum prob-549

lem. By eliminating the cyclic convolution, we transform the NTT into an operation that550

resembles addition under modular constraints, aligning closely with the requirements551

of the Module Modulus Subset Sum problem. Although this might seem to simplify the552

computational demands, it is essential for achieving the desired theoretical mapping while553

maintaining an accurate cryptographic representation of our system.554

Empirical Validation of Uniform Distribution As documented in the appendix,555

extensive empirical tests have statistically proven that the distribution of outputs in the556

Adh system is uniform. This uniform distribution is a critical factor in maintaining the557

system’s resistance to statistical and differential cryptanalysis, providing strong empirical558

evidence supporting the security of the cryptographic setup.559

Mapped Elements from the Adh System to MMSP:560

• Public key: (pk ∈ Zqn)561

• Public challenge: (pkchal ∈ Zqn)562

• Public random: (pkrand ∈ Z qn)563

• Signature: (sig ∈ Zqn)564

• Signature challenge: (sigchal ∈ Zqn)565

• Signature random: (sigrand ∈ Z qn)566

• Secret key: (sk ∈ Z qm)(mapped to (z))567

6.2.1 Forging a Signature568

The goal of an adversary in the Adh system is to forge a signature sig such that it passes569

the verification equation:570

NTT(sig + pkchal+ pkrand) = NTT(pk+ sigchal+ sigrand) (9)

where NTT denotes the Number Theoretic Transform with ω = 1. In the context of the571

Module Modulus Subset Sum problem, the goal is to find a vector z ∈ Zqm such that:572

t = A+ z mod q (10)

where A = pk+ sigchal+ sigrand+ 2s and t = sig + pkchal+ pk rand+ s.573

6.2.2 Reduction Proof574

We now prove that forging a signature in the Adh system is at least as hard as solving575

the Module Modulus Subset Sum problem.576

Theorem 2. If there exists a probabilistic polynomial-time adversary A that can forge577

a valid signature in the Adh system with non-negligible probability, then there exists a578

probabilistic polynomial-time algorithm B that can solve the Module Modulus Subset Sum579

problem with non-negligible probability.580

Proof. Suppose there exists an adversary A that can forge a valid signature in the Adh581

system with non-negligible probability. We construct an algorithm B that uses A to582

solve the Module Modulus Subset Sum problem. Given a Module Modulus Subset Sum583

instance (A, t, q, n,m), B proceeds as follows:584
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1. B sets up the public parameters of the Adh system using the Module Modulus585

Subset Sum instance. It sets the modulus to q, the dimension to n, and the rank586

to m.587

2. B generates the public key pk, public challenge pkchal, and public random pkrand588

according to the Adh system’s key generation algorithm.589

3. B computes A = pk+ sigchal+ sigrand+ 2s and t = sig+ pkchal+ pkrand+590

s, where sigchal and sigrand are randomly generated signature challenge and591

signature random vectors, respectively, and s is the NTT scaling vector.592

4. B invokes the adversary A with the public parameters and the target vector t.593

5. If A successfully forges a valid signature sig, B computes z = t − A mod q and594

outputs z as the solution to the Module Modulus Subset Sum instance.595

If A forges a valid signature with non-negligible probability, then z satisfies t = A +596

z mod q, solving the Module Modulus Subset Sum instance. The success probability of B597

is equal to the success probability of A, which is assumed to be non-negligible. Therefore,598

if the Adh system is susceptible to signature forgery attacks, then the Module Modulus599

Subset Sum problem can be solved with non-negligible probability.600

This reduction proves that forging a signature in the Adh system is at least as hard601

as solving the Module Modulus Subset Sum problem. Consequently, the security of the602

Adh system can be based on the hardness of the Module Modulus Subset Sum problem.603

6.3 Module-ISIS Security Reduction Mappings604

6.3.1 Mapping Module-ISIS605

Algorithm 1 Mapping to Module-ISIS

Require: sk I, rand chal, chal, p, w
Ensure: target vector

sk I ← select representation(sk I, p, w)
rand chal← select representation(rand chal, p, w)
chal← select representation(chal, p, w)
target vector ← pointwise mul(chal, sk I, p)
return target vector

Explanation:606

• The inputs sk I, rand chal, and chal correspond to the secret vector z, the random607

matrix R, and the public matrix A in the Module-ISIS problem, respectively.608

• The select representation function applies the NTT operation to the inputs, trans-609

forming them into the appropriate algebraic structure.610

• The pointwise mul function computes the product A · z, resulting in the target611

vector t.612

• The output target vector represents the target vector t in the Module-ISIS problem.613
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6.3.2 Mapping Module-ISIS+614

Algorithm 2 Mapping to ISIS+
Require: sk I, rand chal, chal, p, w, iters, rnds
Ensure: proof rep

sk I ← select representation(sk I, p, w)
rand chal← select representation(rand chal, p, w)
chal← select representation(chal, p, w)
alt iterables← list()
ntt rep← chal
blinded values← list()
root chal← chal
blinded values.append(root chal)
if iters > 0 then

for ← 0 to iters− 1 do
ntt rep← select representation(ntt rep, p, w)
blinded values.append(ntt rep)
alt iterables.append(ntt rep)

end for
for z ← 1 to iters− 1 do

ntt rep← pointwise mul(ntt rep, alt iterables[z], p)
blinded values.append(ntt rep)

end for
chal← ntt rep

end if
target vector ← pointwise mul(chal, sk I, p)
proof rep← pointwise mul(target vector, rand chal, p)
new chal← pointwise mul(root chal, rand chal, p)
new chal← pointwise add(new chal, chal, p)
new chal← pointwise add(new chal, rand chal, p)
for xx← 0 to rnds− 1 do

proof rep← pointwise mul(proof rep, root chal, p)
proof rep← pointwise mul(proof rep, new chal, p)
proof rep← pointwise mul(proof rep, alt iterables[xx mod iters], p)
new chal← pointwise mul(new chal, new chal, p)
new chal← pointwise add(new chal, new chal, p)

end for
return proof rep

Explanation:615

• The inputs sk I, rand chal, and chal correspond to the secret vector z, the random616

matrix R, and the public matrix A 1 in the ISIS+ problem, respectively.617

• The select representation function applies the NTT operation to the inputs, trans-618

forming them into the appropriate algebraic structure.619

• The pointwise mul function computes the product A 1 · z, resulting in the target620

vector t1.621

• The chaining mechanism is implemented using the alt iterables and blinded values622

lists, where each iteration generates a new instance Ai+ 1 by applying the NTT623

operation to the previous instance A i and a random matrix R i.624

• The pointwise mul and pointwise add functions are used to compute the target625

vectors t i for each instance in the chain.626

• The output proof rep represents the final target vector t k in the ISIS+ problem.627
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6.3.3 Mapping Module-ISIS*628

Algorithm 3 Mapping to ISIS*
Require: sk array, rand chal, chal, p, w, iters, rnds
Ensure: proof rep

for i← 0 to k do
sk array[i]← select representation(sk array[i], p, w)

end for
rand chal← select representation(rand chal, p, w)
chal← select representation(chal, p, w)
alt iterables← list()
ntt rep← chal
blinded values← list()
root chal← chal
blinded values.append(root chal)
if iters > 0 then

for ← 0 to iters− 1 do
ntt rep← select representation(ntt rep, p, w)
blinded values.append(ntt rep)
alt iterables.append(ntt rep)

end for
for z ← 1 to iters− 1 do

ntt rep← pointwise mul(ntt rep, alt iterables[z], p)
blinded values.append(ntt rep)

end for
chal← ntt rep

end if
target vector ← pointwise mul(chal, sk array[0], p)
proof rep← pointwise mul(target vector, rand chal, p)
new chal← pointwise mul(root chal, rand chal, p)
new chal← pointwise add(new chal, chal, p)
new chal← pointwise add(new chal, rand chal, p)
for xx← 0 to rnds− 1 do

proof rep← pointwise mul(proof rep, sk array[xx+ 1], p)
proof rep← pointwise mul(proof rep, root chal, p)
proof rep← pointwise mul(proof rep, new chal, p)
proof rep← pointwise mul(proof rep, alt iterables[xx mod iters], p)
new chal← pointwise mul(new chal, new chal, p)
new chal← pointwise add(new chal, new chal, p)

end for
return proof rep

Explanation:629

• The input sk array is an array of k + 1 secret vectors, where k is the number of630

rounds (rnds). The first secret vector sk array[0] is used as the initial secret z, and631

the subsequent secret vectors sk array[1] to sk array[k] are used in each round.632

• The select representation function is applied to each secret vector in sk array to633

transform them into the appropriate algebraic structure.634

• The initial steps are similar to ISIS+, where the chaining mechanism is implemented635

using the alt iterables and blinded values lists.636

• In each round, the pointwise mul function is used to multiply the current proof rep637

with the corresponding secret vector sk array[xx+ 1] at the start of the loop.638

• The rest of the steps in each round are similar to ISIS+, where proof rep is multi-639

plied with root chal, new chal, and alt iterables[xx mod iters].640

• The new chal is updated using pointwise mul and pointwise add in each round.641

• The output proof rep represents the final target vector in the ISIS* problem.642
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6.4 Module-ISIS Security Reductions643

In this section, we present a brief security analysis of the Adh zero-knowledge proof644

system. We begin by reducing the security of the Adh system to the hardness of the645

Module-ISIS problem and its variants, Module-ISIS+, Module-ISIS*, and Module-ISIS**.646

6.4.1 Reduction to Module-ISIS647

To establish the security of the Adh system, we reduce its security to the hardness of648

the Module-ISIS problem. We show that if an adversary can forge a valid proof in the649

Adh system, then they can solve the Module-ISIS problem, which is assumed to be650

computationally infeasible for appropriately chosen parameters.651

Theorem 3 (Reduction to Module-ISIS). If there exists a probabilistic polynomial-time652

adversary A that can forge a valid proof in the Adh system with non-negligible probability,653

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-654

ISIS problem with non-negligible probability.655

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system656

with non-negligible probability. We construct an algorithm B that uses A to solve the657

Module-ISIS problem. The complete proof is provided in Appendix A.1.658

6.4.2 Reduction to Module-ISIS+659

Theorem 4 (Reduction to Module-ISIS+). If there exists a probabilistic polynomial-time660

adversary A that can forge a valid proof in the Adh system with non-negligible probability,661

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-662

ISIS+ problem with non-negligible probability.663

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system664

with non-negligible probability. We construct an algorithm B that uses A to solve the665

Module-ISIS+ problem. Given a Module-ISIS+ instance (A 1, t 1, . . . , tk, q, n,m, β), B666

proceeds as follows:667

• B sets up the public parameters of the Adh system using the Module-ISIS+ instance.668

• B generates the public key pk and sends it to A.669

• A outputs a forged proof (sig,sig chal,sig rand).670

• B computes z = sig−sig, where sig is a valid proof generated by B.671

• If z ̸= 0 and ||z||∞ ≤ 2β, then B outputs z as a solution to the Module-ISIS+672

instance.673

A complete proof is provided in Appendix A.2.674

Theorem 5 (Reduction to Module-ISIS+). If there exists a probabilistic polynomial-time675

adversary A that can forge a valid proof in the Adh system with non-negligible probability,676

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-677

ISIS+ problem with non-negligible probability.678

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system679

with non-negligible probability. We construct an algorithm B that uses A to solve the680

Module-ISIS+ problem. The complete proof is provided in Appendix A.2.681
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6.4.3 Reduction to Module-ISIS*682

We introduce a variant of the Module-ISIS+ problem, called Module-ISIS*, which incor-683

porates the use of multiple secret keys, one for each instance of the module lattice, to684

enhance the hardness of the problem against lattice reduction and algebraic attacks.685

Theorem 6 (Reduction to Module-ISIS*). If there exists a probabilistic polynomial-time686

adversary A that can forge a valid proof in the Adh system with non-negligible probability,687

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-688

ISIS* problem with non-negligible probability.689

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system690

with non-negligible probability. We construct an algorithm B that uses A to solve the691

Module-ISIS* problem. The complete proof is provided in Appendix A.3.692

6.4.4 Reduction to Module-ISIS**693

We present a refined variant of the Module-ISIS* problem, called Module-ISIS**, which694

incorporates the use of different roots of unity or primes at each level of the chained695

instances. This approach aims to enhance the security of the Adh zero-knowledge proof696

system by introducing distinct algebraic structures at each stage.697

Theorem 7 (Reduction to Module-ISIS**). If there exists a probabilistic polynomial-time698

adversary A that can forge a valid proof in the Adh system with non-negligible probability,699

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-700

ISIS** problem with non-negligible probability.701

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system702

with non-negligible probability. We construct an algorithm B that uses A to solve the703

Module-ISIS** problem. The complete proof is provided in Appendix A.4.704

6.5 BKZ Lattice Reduction Analysis N = 128705

To assess the effectiveness of the BKZ lattice reduction algorithm on the Adh crypto-706

graphic system, we conducted an extensive experimental analysis using the fplll library.707

The system was configured with a dimension of n = 128, 4 rounds, and 4 iterables. We708

varied the BKZ block size from 10 to 100 in increments of 10, running the reduction on 50709

instances for each block size, resulting in a total of 500 data points. NTT configuration710

used for testing was ps = [257, 257] and ws = [3, 3].711

Figure 1 shows the distribution of the root Hermite factor (RHF) across different712

BKZ block sizes. The RHF is a measure of the quality of the reduced basis, with lower713

values indicating a better reduction. The mean RHF across all block sizes is approxi-714

mately 1.055, with minimal variation between block sizes. This suggests that increasing715

the BKZ block size does not significantly improve the quality of the reduced basis for the716

Adh system. The distribution of the adjusted shortest vector length, shown in Figure717

2, further supports this observation. The adjusted shortest vector length is computed718

as ℓ/(det(L))1/ dim(L), where ℓ is the length of the shortest vector found by BKZ. Higher719

values indicate a better reduction. The mean adjusted shortest vector length is approxi-720

mately 947, with minimal variation across block sizes. The lattice determinant, a measure721

of the volume of the fundamental parallelepiped of the lattice, is another important fac-722

tor in assessing the hardness of the lattice. Figure 3 shows the distribution of the lattice723
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Figure 1: Distribution of Root Hermite Factors by BKZ Block Size

Figure 2: Distribution of Adjusted Shortest Vector Length by BKZ Block Size
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determinant across BKZ block sizes. The mean lattice determinant is approximately724

3.77, with a standard deviation of 2.40. The distribution is skewed towards lower values,725

indicating that the majority of the reduced bases have a relatively small determinant.726

Figure 4 presents the distribution of the log lattice determinant, which provides a clearer

Figure 3: Distribution of Lattice Determinant by BKZ Block Size

727

visualization of the spread of the determinant values. The log determinant is concen-728

trated between 0 and 1, with a mean value of approximately 0.38. These experimental

Figure 4: Distribution of Log Lattice Determinant by BKZ Block Size

729

results suggest that the Adh cryptographic system, with the specified parameters, exhibits730

strong resistance against the BKZ lattice reduction algorithm. The minimal variation in731

the RHF and adjusted shortest vector length across block sizes indicates that increas-732

ing the BKZ block size does not significantly improve the quality of the reduced basis.733

Furthermore, the concentration of the lattice determinant towards lower values suggests734

that the reduced bases maintain a relatively small volume, which is a desirable property735

for maintaining the hardness of the underlying lattice problem.736
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6.5.1 Security Estimate based on Root Hermite Factor737

The Root Hermite Factor (RHF) is a key metric in assessing the quality of a lattice reduc-738

tion algorithm and, consequently, the security of a lattice-based cryptographic system.739

The RHF is defined as ( |v|
(det(L))1/n )

1/n, where |v| is the length of the shortest non-zero740

vector in the reduced basis, det(L) is the determinant of the lattice L, and n is the741

dimension of the lattice.742

In the context of the Adh cryptographic system, the experimental results shown in743

Figure 1 indicate that the RHF values are consistently close to 1.055010 across different744

BKZ block sizes. This suggests that the system maintains a stable level of security against745

the BKZ lattice reduction algorithm, regardless of the block size used. To estimate the746

bits of security provided by the Adh system based on the RHF, we use the BKZ 2.0747

simulator and the assumption that the cost of BKZ reduction grows exponentially with748

the block size. The validity of this methodology has been widely accepted in the lattice-749

based cryptography community, as it provides a conservative estimate of the security750

level. Given the lattice dimension n = 128 and the average RHF value of 1.055010, we751

can compute the security estimate as follows:752

1. Define the lattice dimension n = 128 and the RHF δ = 1.055010.753

2. Compute the gap γ = δ−n = 1.055010−128 ≈ 0.000614.754

3. Compute the absolute value of the natural logarithm of γ: | ln(γ)| ≈ 7.396797.755

4. Calculate the time complexity using the BKZ formula: 2c·n·| ln(γ)|, where c = 0.292756

is the BKZ cost constant.757

Time complexity = 20.292·128·7.396797 ≈ 2276.190486

5. Derive the bits of security as the base-2 logarithm of the time complexity:758

Bits of security = log2(Time complexity) ≈ 276.190486

The choice of the BKZ cost constant c = 0.292 is based on the work of Chen and Nguyen759

[Chen2011], who empirically determined this value through extensive experiments on760

BKZ reduction. This constant has been widely adopted in the lattice-based cryptogra-761

phy community and is considered a conservative estimate of the BKZ cost. Therefore,762

based on the RHF values observed in the experimental results and the aforementioned763

methodology, we estimate that the Adh cryptographic system with parameters n = 128764

and average RHF δ = 1.055010 provides approximately 276 bits of security against the765

BKZ lattice reduction algorithm.766

6.5.2 Adjusting the Root Hermite Factor for Zero-Free Lattices767

In the context of the Adh cryptographic system, which operates in a zero-free regime,768

it is crucial to consider the impact of excluding zero vectors on the calculation of the769

Root Hermite Factor (RHF). The RHF is a key metric for assessing the quality of a770

lattice reduction algorithm and the security of a lattice-based cryptographic system. The771

standard RHF calculation is given by δ = ( |v|
(det(L))1/n )

1/n, where |v| is the length of the772

shortest non-zero vector in the reduced basis, det(L) is the determinant of the lattice773

L, and n is the dimension of the lattice. However, in a zero-free lattice, the shortest774

vector length must be adjusted to account for the exclusion of zero vectors. We propose775

an adjusted RHF calculation that incorporates a norm offset to handle the zero-free776
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property of the Adh system’s lattices. The adjusted RHF is computed as follows:777

δadj =

(
|v|adj

(det(L))1/n

)1/n

|v|adj = max(|v| − norm offset + 1, 1)

where |v| adj is the adjusted shortest vector length, and norm offset is an integer rep-778

resenting the offset for the norm bound. The max function ensures that the adjusted779

norm remains positive, preventing non-positive values under the root. This adjustment780

is justified by the fact that the zero-free property of the Adh system’s lattices results in781

a higher effective density compared to lattices that allow zero vectors. The exclusion of782

zero vectors increases the minimum distance between lattice points, making the lattice783

harder to reduce. Consequently, the security of the system is enhanced against lattice784

reduction algorithms like BKZ.785

Furthermore, the high density and zero-free nature of the Adh system’s lattices suggest786

that the BKZ cost constant c should be increased to reflect the additional complexity of787

the reduction process. Based on the empirical observations and the conjectured impact of788

the zero-free property on the BKZ algorithm, we propose using an adjusted cost constant789

of cadj = 0.3504. Using the adjusted RHF and the updated BKZ cost constant, we can790

refine the security estimate for the Adh system. Given the lattice dimension n = 128791

and the average adjusted RHF value of δadj = 1.055010, the revised security estimate is792

calculated as follows:793

1. Define the lattice dimension n = 128 and the adjusted RHF δadj = 1.055010.794

2. Compute the gap γ = δ−nadj = 1.055010−128 ≈ 0.000614.795

3. Compute the absolute value of the natural logarithm of γ: | ln(γ)| ≈ 7.396797.796

4. Calculate the time complexity using the BKZ formula with the adjusted cost con-797

stant:798

Time complexity = 2cadj·n·| ln(γ)| = 20.3504·128·7.396797 ≈ 2331.428583

5. Derive the bits of security as the base-2 logarithm of the time complexity:799

Bits of security = log2(Time complexity) ≈ 331.428583

The revised security estimate, taking into account the adjusted RHF and the increased800

BKZ cost constant, suggests that the Adh cryptographic system with parameters n = 128801

and average adjusted RHF δadj = 1.055010 provides approximately 331 bits of security802

against the BKZ lattice reduction algorithm. This enhanced security level can be at-803

tributed to the zero-free property of the Adh system’s lattices, which increases the ef-804

fective density and makes the lattice reduction process more challenging. The adjusted805

RHF calculation and the increased BKZ cost constant capture the additional complexity806

introduced by the zero-free regime. It is important to note that these adjustments are807

based on empirical observations and theoretical conjectures. Further research and rig-808

orous analysis are needed to fully validate the impact of the zero-free property on the809

security of lattice-based cryptographic systems like Adh.810

6.5.3 Security Estimate for the Adh System with n=256811

We now present a comprehensive security analysis of the Adh cryptographic system with812

a lattice dimension of n = 256, based on the complete BKZ block size results provided.813
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Figure 5 shows the distribution of the Root Hermite Factor (RHF) across different BKZ814

block sizes for the Adh system with n = 256. The mean RHF across all block sizes815

is approximately 1.028749, with minimal variation between block sizes. This suggests816

that the Adh system maintains a consistent level of security against the BKZ lattice817

reduction algorithm, even with the increased lattice dimension. To estimate the bits of

Figure 5: Distribution of Root Hermite Factors by BKZ Block Size for n=256

818

security provided by the Adh system with n = 256, we follow the same methodology819

as before, incorporating the adjustments for the zero-free regime and the increased BKZ820

cost constant. Given the lattice dimension n = 256 and the average adjusted RHF value821

of δadj = 1.028749, the security estimate is calculated as follows:822

1. Define the lattice dimension n = 256 and the adjusted RHF δadj = 1.028749.823

2. Compute the gap γ = δ−nadj = 1.028749−256 ≈ 0.000545.824

3. Compute the absolute value of the natural logarithm of γ: | ln(γ)| ≈ 7.514492.825

4. Calculate the time complexity using the BKZ formula with the adjusted cost con-826

stant:827

Time complexity = 2cadj·n·| ln(γ)| = 20.3504·256·7.514492 ≈ 2673.347983

5. Derive the bits of security as the base-2 logarithm of the time complexity:828

Bits of security = log2(Time complexity) ≈ 673.347983

The security estimate for the Adh system with parameters n = 256 and average adjusted829

RHF δadj = 1.028749 suggests that the system provides approximately 673 bits of security830

against the BKZ lattice reduction algorithm. This significant increase in the security level,831

compared to the n = 128 case, can be attributed to the larger lattice dimension, which832

exponentially increases the complexity of the lattice reduction process.833

The consistency of the RHF values across different BKZ block sizes, as shown in834

Figure 5, further supports the robustness of the Adh system against lattice reduction835

attacks. The minimal variation in the RHF suggests that the system maintains a stable836

level of security, regardless of the block size used in the BKZ algorithm. The complete837

BKZ block size results for n = 256 strengthen the confidence in the security estimate838

and demonstrate the scalability of the Adh system. The system maintains a high level839

of security even when the block size is increased to 100, indicating its resilience against840

advanced lattice reduction techniques.841
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Moreover, the statistical summary provided in the updated data confirms the stability842

and consistency of the RHF values across different BKZ block sizes. The narrow range843

between the minimum and maximum RHF values, as well as the small standard deviation,844

further emphasize the robustness of the Adh system.845

6.6 Experimental Analysis of Reduced Instances using Integer846

Linear Programming847

To investigate the hardness of the Adh zero-knowledge proof system, we conducted an ex-848

perimental analysis of reduced instances derived from the original system. These reduced849

instances were obtained by simplifying the problem to a subset sum problem, where the850

multiplication operation was relaxed to addition, the root of unity was set to 1, and the851

blinding step in the proof generation was removed. The resulting subset sum problem852

instances had a density of 1, as the modulus and the norm bound were both set to 257.853

Rounds and iterables were also set to 0 for this testing. We employed an Integer Lin-854

ear Programming (ILP) solver, specifically the GLPK solver, to solve the subset sum855

problem instances for three different dimensions: n = 64, n = 128, and n = 256. The856

objective value progress over the elapsed time was recorded for each instance to analyze857

the hardness of the problem.858

Figure 6: n = 64 instance

Figure 6.6 illustrates the objective value progress for each problem dimension. For the859

n = 64 instance, the objective value increases steadily but slowly, suggesting that finding860

the optimal solution is computationally challenging even for this reduced instance. As861

the dimension increases to n = 128 and n = 256, the progress becomes more pronounced862

initially but slows down significantly thereafter, indicating the increased difficulty of the863

problem.864

The solver output provides further insights into the problem-solving process. The865

solver uses a branch-and-bound algorithm and reports the current best solution found866
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Figure 7: n = 128 instance

Figure 8: n = 256 instance
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(mip) and the lower bound at different nodes. The gap between the best solution and the867

lower bound decreases slowly, highlighting the difficulty of closing the optimality gap.868

The experimental results demonstrate that solving the reduced instances of the Adh869

system, which have a density of 1, remains computationally challenging. As the dimen-870

sion increases, the problem becomes harder, and finding the optimal solution within a871

reasonable time frame becomes more difficult. The slow progress in the objective value872

and the large optimality gap after a significant number of solver iterations indicate the873

hardness of the problem.874

It is important to note that the subset sum problem is NP-complete, and the difficulty875

of solving it depends on the problem size and the specific instance. While the provided876

results suggest the hardness of the reduced instances, further analysis and experiments877

with larger dimensions and different problem instances would be necessary to draw more878

conclusive statements about the security of the Adh system.879

6.7 Conclusion and Future Work880

Throughout the development and assessment of the Adh cryptographic system, we have881

undertaken a broader range of testing than initially anticipated, including extensive statis-882

tical analysis, ILP testing, and rigorous BKZ lattice reduction analysis. This multifaceted883

evaluation approach has not only affirmed the robustness of our system but also provided884

deep insights into its resilience against various cryptographic challenges.885

While we encourage the community to re-implement our system and conduct their886

own independent tests, we recognize the need for a centralized, standardized testing887

framework. Currently, we are in the process of compiling all the varied testing codes into888

a cohesive module. This aggregation effort aims to ensure that all testing methodologies889

are consistent, reproducible, and accessible to researchers and practitioners alike.890

We plan to release this comprehensive testing module independently, and the specific891

code used in each experiment is available on request. In its current state we do not feel892

representative of our best work.893

6.8 Supporting Arguments894

6.8.1 No Correlation895

Theorem 8 (No Correlation Between Chained Instances). Let A1,A2, . . . ,Ak be a se-896

quence of chained instances in the Adh cryptographic system, where each instance Ai897

is derived from the previous instance Ai− 1 using a combination of NTT operations,898

modular arithmetic, and the introduction of fresh randomness. Let Xi and Xj be the899

output vectors of instances Ai and Aj, respectively, where i ̸= j. Then, there exists no900

statistically significant correlation between Xi and Xj.901

Proof. To prove the absence of correlation between chained instances, we rely on the902

following observations and properties of the Adh system:903

1. Uniform Distribution: The output vectors of each instance in the Adh system904

have been empirically demonstrated to follow a uniform distribution. Let Xi =905

(xi, 1, xi,2, . . . , xi,n) andXj = (xj, 1, xj,2, . . . , xj,n) be the output vectors of instances906

Ai and Aj, respectively. Then, for all l ∈ 1, 2, . . . , n:907

Pr[xi, l = v] = Pr[xj, l = v] =
1

q
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where v ∈ Zq and q is the modulus used in the Adh system.908

2. Independence: The NTT operations and modular arithmetic used in the Adh909

system are designed to preserve the independence of the output values. For any910

two distinct indices l,m ∈ 1, 2, . . . , n:911

Pr[xi,l = v1 | xi,m = v2] = Pr[xi,l = v1]

where v1, v2 ∈ Zq. This property holds for all instances Ai.912

3. Fresh Randomness: Each instance Ai introduces fresh randomness through the913

use of a randomizer value ri. This randomizer is context-bound to the problem914

instance and is utilized after being added to intermediate variables. The introduc-915

tion of fresh randomness ensures that the output of each instance is independent of916

the previous instances, preventing an adversary from effectively manipulating the917

system for advantage.918

Let ρ(Xi,Xj) denote the Pearson correlation coefficient between the output vectors Xi919

and Xj. By the properties of uniform distribution and independence, we have:920

E[xi,l] = E[xj,l] =
q − 1

2

Var[xi,l] = Var[xj,l] =
q2 − 1

12
Cov[xi,l, xj,m] = E[xi,lxj,m]− E[xi,l]E[xj,m] = 0

Therefore, the correlation coefficient ρ(Xi,Xj) can be computed as:921

ρ(Xi,Xj) =

∑
l = 1nCov[xi, l, xj,l]√∑n

l=1Var[xi,l]
√∑n

l=1Var[xj,l]

=
0√

n · q2−1
12

√
n · q2−1

12

= 0

The correlation coefficient ρ(Xi,Xj) = 0 indicates that there is no linear correlation922

between the output vectors of instances Ai and Aj. Furthermore, the introduction of923

fresh randomness through the context-bound randomizer values ri ensures that the out-924

put of each instance is independent of the previous instances. This property prevents925

an adversary from exploiting any potential correlations or manipulating the system for926

advantage. In conclusion, the uniform distribution of the output values, the indepen-927

dence preserved by the NTT operations and modular arithmetic, and the introduction928

of fresh randomness through context-bound randomizer values collectively ensure that929

there exists no statistically significant correlation between the chained instances in the930

Adh cryptographic system.931

This proof demonstrates that the design of the Adh system, with its use of NTT932

operations, modular arithmetic, and context-bound randomizer values, effectively elim-933

inates any correlation between the chained instances. The absence of correlation is a934

crucial property that contributes to the overall security and resilience of the Adh system935

against potential attacks that may attempt to exploit correlations between instances.936

The uniform distribution of the output values, as empirically demonstrated, ensures that937

the system maintains a high level of unpredictability and resistance to statistical analy-938

sis. The independence preserved by the NTT operations and modular arithmetic further939
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strengthens the system’s security by preventing an adversary from inferring information940

about one instance based on the observations of another. Moreover, the introduction941

of fresh randomness through the context-bound randomizer values plays a vital role in942

preventing an adversary from manipulating the system for advantage. By adding these943

randomizer values to intermediate variables, the Adh system ensures that each instance944

is effectively isolated from the others, making it infeasible for an adversary to exploit any945

potential weaknesses or correlations.946

6.8.2 Completeness Argument947

Completeness ensures that an honest prover can always convince the verifier of a true948

statement. We argue that the Adh system satisfies the completeness property, assuming949

the availability of a source of true randomness.950

Lemma 2 (Completeness). The Adh zero-knowledge proof system is complete, assuming951

the availability of a source of true randomness. That is, an honest prover can always952

convince the verifier of a true statement.953

Theorem 9. The proof generation algorithm of the Adh system ensures that an honest954

prover can always generate a valid proof for a true statement. The use of rejection955

sampling and the availability of a source of true randomness guarantee that the prover956

can find a suitable signature randomness sig rand that results in a valid proof. A complete957

proof provided in Appendix A.19.958

This argument demonstrates that the Adh system satisfies the completeness property,959

ensuring that an honest prover can always convince the verifier of a true statement.960

6.8.3 Impact of Zero Elimination on Lattice Reduction Algorithms961

The Adh system employs rejection sampling to eliminate zero coefficients from the vectors962

involved in the proof generation and verification processes. This feature results in a963

complete lattice structure, which appears to impact the efficiency of lattice reduction964

algorithms via tools such as fplll[10].965

Conjecture 2 (Impact of Zero Elimination). The elimination of zero coefficients in966

the Adh system results in a complete lattice structure, which increases the complexity of967

finding short vectors using lattice reduction algorithms, such as LLL and BKZ.968

We provide a heuristic argument supporting this conjecture:969

• Lattice reduction algorithms, such as LLL and BKZ, rely on the presence of short970

vectors in the lattice basis to improve the quality of the reduced basis.971

• The elimination of zero coefficients in the Adh system results in a complete lattice972

structure, where all basis vectors have non-zero coefficients.973

• The absence of short vectors in the basis makes it more challenging for lattice reduc-974

tion algorithms to find a good reduced basis, potentially increasing the complexity975

of solving the underlying lattice problem as enumeration based methodologies may976

be required.977

Further research is needed to formally analyze the impact of zero elimination on the978

efficiency of lattice reduction algorithms and to quantify its effect on the security of the979

Adh system.980
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6.8.4 Bounded Correlation between Chained Instances981

Conjecture 3 (Bounded Correlation in Module-ISIS+ Family). Let F be a family of982

Module-ISIS+ constructions with chained instances, where each instance Ai is derived983

from the previous instance Ai− 1 using an NTT operation and a random blinding matrix984

Ri. Let N = NTT(1), . . . ,NTT(n) be the set of available full NTT representations, where985

the distribution of representations is determined by the NTT configuration. The level of986

bounded correlation between instances Ai and Aj, where i ̸= j, is reducible to the problem987

of reconstructing an undersampled signal, combined with the uncertainty in identifying the988

specific NTT representation NTT(k) ∈ N used in each instance.989

Argument: The chained instances in the Module-ISIS+ family of constructions are990

designed to minimize the correlation between the public matrix values Ai and Aj, where991

i ̸= j. The argument for the bounded correlation property relies on the following obser-992

vations:993

• Set of Available NTT Representations: The Module-ISIS+ construction uti-994

lizes a set of available full NTT representations N = NTT(1), . . . ,NTT(n), where995

the distribution of representations is determined by the NTT configuration. Each996

instance Ai is transformed using one of these NTT representations, selected based997

on the specific configuration and randomness introduced in the construction.998

• Undersampled Signal Reconstruction: The correlation between instances Ai999

and Aj can be viewed as the problem of reconstructing an undersampled signal.1000

Given a limited number of samples or observations from one instance, reconstructing1001

the complete signal (i.e., the matrix values) of another instance becomes challenging.1002

The NTT operation, combined with the random blinding matrix and the selection1003

of a specific NTT representation, acts as a form of undersampling, making the1004

reconstruction problem more difficult.1005

• Uncertainty in Identifying the NTT Representation: An attacker attempt-1006

ing to correlate instances Ai and Aj faces uncertainty in identifying the specific1007

NTT representation used in each instance. The selection of the NTT represen-1008

tation NTT(k) ∈ N is determined by the NTT configuration and introduces ran-1009

domness into the process. The attacker would need to correctly guess or infer the1010

NTT representation used in each instance to establish a correlation, which becomes1011

increasingly difficult as the number of available representations grows.1012

• Tunable Distribution of NTT Representations: The distribution of NTT1013

representations in the set N is tunable based on the NTT configuration. By ad-1014

justing the configuration, the probability of selecting a specific NTT representation1015

can be controlled. This tunable distribution adds another layer of complexity to1016

the correlation analysis, as the attacker cannot rely on a uniform or predictable1017

distribution of representations.1018

• Random Blinding Matrix: The incorporation of a random blinding matrix Ri1019

in the derivation of each instance further obscures the relationship between the ma-1020

trix values. The blinding matrix introduces additional randomness and masks the1021

original matrix, making it harder to establish a direct correlation between instances.1022

The combination of these factors - the set of available NTT representations, the1023

undersampled signal reconstruction problem, the uncertainty in identifying the specific1024

NTT representation, the tunable distribution of representations, and the random blinding1025

matrix - supports the argument that the level of bounded correlation between instances1026

in the Module-ISIS+ family is effectively negligible. Outside the field of cryptography,1027
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in areas such as signals processing and image analysis the problem of reconstructing1028

data from the input domain value using insufficient samples from the frequency(or NTT)1029

domain is well studied.1030

The hardness of the signal reconstruction problem in the NTT domain ensures that,1031

given A′, it is computationally infeasible to recover the original matrix A without addi-1032

tional information. This property, combined with the randomization introduced by the1033

NTT, bounds the correlation between A and A′.1034

While this argument requires a a formal proof, we feel this lack of useful correlation to1035

be a conservative assumption. Should this particular conjecture not hold, there are other1036

ways to achieve a provably secure result. Thus, the security of Adh does not depend on1037

this being correct, but we believe it will prove to be. A formal proof would involve a1038

reduction from the signal reconstruction problem to the problem of recovering A from1039

A′, establishing the computational hardness of the latter. While out of scope for this1040

paper, further work will formally bound this correlation and impact on security.1041

6.8.5 Argument of Soundness1042

Soundness is a crucial property of a zero-knowledge proof system, ensuring that a com-1043

putationally bounded adversary cannot convince the verifier of a false statement, except1044

with negligible probability. We provide a proof of soundness for the Adh system based on1045

the hardness of the Module-ISIS problem. A complete proof is provided in the appendix.1046

Theorem 10 (Soundness). The Adh zero-knowledge proof system is sound, assuming1047

the hardness of the Module-ISIS problem. That is, a computationally bounded adversary1048

cannot convince the verifier of a false statement, except with negligible probability.1049

Proof. Suppose there exists a probabilistic polynomial-time adversary A that can con-1050

vince the verifier of a false statement with non-negligible probability. We construct an1051

algorithm B that uses A to solve the Module-ISIS problem. Given a Module-ISIS instance1052

(A, t, q, n,m, β), B proceeds as follows:1053

1. B sets up the public parameters of the Adh system using the Module-ISIS instance.1054

2. B generates the public key pk and sends it to A.1055

3. A outputs a false statement and a proof (sig,sig chal,sig rand).1056

4. B verifies the proof using the verification algorithm of the Adh system.1057

5. If the proof is accepted, B computes z = sig−sig, where sig is a valid proof gener-1058

ated by B.1059

6. If z ̸= 0 and ||z||∞ ≤ 2β, then B outputs z as a solution to the Module-ISIS1060

instance.1061

The complete proof is provided in Appendix A.5.1062

This proof demonstrates that if an adversary can convince the verifier of a false state-1063

ment, then they can solve the Module-ISIS problem, contradicting the assumed hardness1064

of Module-ISIS. Therefore, the Adh system is sound, ensuring that an adversary cannot1065

convince the verifier of a false statement, except with negligible probability.1066

6.8.6 Empirical Evidence for Zero-Knowledge Property1067

The zero-knowledge property ensures that a proof generated by the Adh system does1068

not reveal any information about the secret key, except for the validity of the statement1069

being proven. We present empirical evidence supporting the zero-knowledge property of1070

the Adh system.1071
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• Simulator-based approach: We construct a simulator that generates proofs with-1072

out access to the secret key. The simulator’s output is computationally indistin-1073

guishable from the proofs generated by the real prover, suggesting that the proofs1074

do not leak information about the secret key.1075

• Statistical tests: We perform statistical tests, such as the chi-squared test and the1076

Kolmogorov-Smirnov test, to compare the distribution of the proofs generated by1077

the real prover and the simulator. The test results indicate that the distributions1078

are statistically indistinguishable, supporting the zero-knowledge property.1079

The detailed experimental setup and results are provided in Appendix A.17.1080

6.8.7 Analysis of the select representation Function and Its Impact on Se-1081

curity1082

The select representation function plays a crucial role in the Adh zero-knowledge proof1083

system by transforming the input vector into a suitable representation for further pro-1084

cessing. Currently, the function performs a forward Number Theoretic Transform (NTT)1085

on the input vector using a fixed prime modulus p and a root of unity ω. The primary1086

objective of this function is to obtain a full vector representation, where all coefficients1087

are non-zero, to ensure the desired properties of the resulting lattice.1088

One notable aspect of the select representation function is its behavior in finding a1089

full vector representation. Due to the poly check function, which verifies the suitability1090

of the input vector, we have a guarantee that the first NTT representation of any vector1091

will always be full. This property is essential for maintaining the security and correctness1092

of the Adh system.1093

However, the number of attempts required by the select representation function to1094

find a full vector representation is not deterministic and depends on the specific choice1095

of the prime modulus p and the root of unity ω. Empirical observations have shown that1096

the distribution of the number of attempts varies based on the selected field and root.1097

For instance, when using p = 257 and ω = 3, approximately 60% of the time, the1098

function returns a full vector representation after a single attempt. In 39% of the cases,1099

a second attempt is required, and in the remaining 1% of the cases, the function is forced1100

to return a vector with at least one zero coefficient. This distribution highlights the1101

probabilistic nature of finding a full vector representation.1102

Similarly, when using p = 257 and ω = 5, the distribution of the number of attempts1103

follows a downward slope, extending up to 8 potential NTT ”frequencies” before the1104

probability of finding a full vector representation approaches zero. This behavior sug-1105

gests that the choice of the root of unity ω can significantly impact the efficiency and1106

determinism of the select representation function.1107

The decisional process of sorting through multiple slots, each with a certain probability1108

of yielding a good result, is an interesting aspect to consider in the context of the Adh1109

system’s security. While the specific details of this process may vary based on the chosen1110

field and root, it is unlikely to reveal any useful information about the original input to1111

the select representation function.1112

This claim is supported by the fundamental principles of information theory, which1113

suggest that the amount of information that can be extracted from the output of the1114

select representation function is limited by the entropy of the input vector and the1115

properties of the NTT operation. The NTT, being a linear transformation, preserves the1116

statistical properties of the input vector, making it difficult for an attacker to gain any1117
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significant advantage by analyzing the decisional process.1118

Furthermore, the use of rejection sampling techniques in the Adh system, combined1119

with the chaining construction and the careful selection of parameters, further enhances1120

the security by amplifying the complexity and destroying any discernible patterns in the1121

resulting lattice.1122

In conclusion, the select representation function’s behavior in finding a full vector1123

representation is an important aspect to consider in the Adh zero-knowledge proof system.1124

The distribution of the number of attempts required to find a full vector varies based on1125

the chosen field and root, highlighting the probabilistic nature of the process. However,1126

the decisional process itself is unlikely to reveal any useful information about the original1127

input, thanks to the fundamental limitations imposed by information theory and the1128

security measures employed in the Adh system. Further research into the impact of1129

different field and root choices on the efficiency and security of the select representation1130

function could provide valuable insights for optimizing the Adh system’s performance1131

and robustness.1132

6.9 Lattice Density in Module-ISIS1133

In the context of Module-ISIS, where B = 257 (infinity norm), q = 257 (prime), n = 1281134

or 256, and k = 6 (rank), we consider a full construct with no zero-value coefficients1135

allowed. By rejection sampling out all vectors with zeros, we effectively work with a1136

universe of 1-257 (modulo 257), excluding the zero vector. As the1137

6.9.1 Hypercube Volume1138

The volume of the hypercube with side length B = 256+ 1 in n dimensions is calculated1139

as:1140

• For n = 128: 2571281141

• For n = 256: 2572561142

6.9.2 Unit Cell Volume1143

The volume of the unit cell in the lattice, which is the fundamental parallelotope, is:1144

• For n = 128: 2571281145

• For n = 256: 2572561146

6.9.3 Packing Density1147

The packing density is the ratio of the hypercube volume to the unit cell volume:1148

• For n = 128: 257128
257128

= 11149

• For n = 256: 257256

257256
= 11150

The packing density values of 1 indicates that the hypercubes occupy the entire unit1151

cell volume in the lattice. This high packing density suggests that the lattice is densely1152

packed, with no gaps between the hypercubes. This is a function of the infinite norm1153

bound being the same as the prime used for modular arithmetic It is important to note1154

that the rank k does not directly affect the packing density calculation, as it represents1155

the dimension of the module. The high packing density of the Module-ISIS lattice has1156

potential implications for the security and hardness of the underlying problem:1157
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• The dense packing of the lattice makes it more challenging for lattice reduction1158

algorithms like BKZ to find short vectors, potentially enhancing the security of the1159

cryptographic system.1160

• If the Module-ISIS problem can be reduced to a dense subset sum problem, the1161

high packing density could make it computationally infeasible to solve using known1162

optimization techniques for subset sum problems. This reduction, if possible, would1163

provide a strong argument for the security of the cryptographic system.1164

• The absence of 0 coefficients in the module-ISIS lattice increases the density of1165

the lattice, making it more challenging for lattice reduction algorithms like BKZ1166

to find short vectors. This property could potentially enhance the security of the1167

cryptographic system.1168

• If the module-ISIS problem can be reduced to a module-module subset sum problem,1169

the high density of the lattice could make it computationally infeasible to solve using1170

known optimization techniques for subset sum problems. This reduction, if possible,1171

would provide a strong argument for the security of the cryptographic system.1172

• There are some theoretical results on the hardness of dense lattices, such as the work1173

by Micciancio and Regev [8], which shows that solving certain lattice problems on1174

dense lattices is at least as hard as solving them on general lattices.1175

1176

7 Practical Implementation Considerations1177

While not included in the formal security analysis presented in this paper, it is worth1178

noting that in practical implementations of the Adh system, where the first modulus1179

is chosen to be 257 or 65537, we can take advantage of the guaranteed absence of zero1180

coefficients to optimize storage and transport efficiency. By subtracting 1 from each coef-1181

ficient, we can ensure that the cryptographic variables follow 8-bit or 16-bit alignments,1182

rather than requiring 9 or 17 bits, respectively. This encoding process must be inverted1183

before using the variables in computations. It is important to emphasize that in practical1184

instances, the challenge and random variables should be generated from smaller values1185

corresponding to the appropriate bits of security required by the system. Table 3 presents1186

two prototype instances of the Adh system, illustrating the storage requirements for se-1187

crets, public keys, and complete proofs. In the first instance, with parameters n = 128,

Instance n p m B Size
V 128 257 6 256 SK 192B - PK 192B - CT 192B

VI 256 257 6 256 SK 384B - PK 384B - CT 384B

Table 3: Storage requirements for prototype instances of the Adh system.

1188

p = 257, m = 6, and B = 256, the secrets and public keys each require 192 bytes of stor-1189

age. The complete proofs consist of a 128-byte proof, a 32-byte random challenge, and1190

a 32-byte message challenge. The second instance, with parameters n = 256, p = 257,1191

m = 6, and B = 256, requires 384 bytes for both secrets and public keys. The complete1192

proofs in this case include a 256-byte proof, a 64-byte random challenge, and a 64-byte1193

message challenge. Note that Module-ISIS* will need to store k + 1 unique secret keys,1194

one for each extra instance.1195

1196
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7.1 Parameter Selection and Initial Security Estimates1197

The security of the Adh system relies on the appropriate selection of parameters, such as1198

the modulus q, the dimension n, the rank m, and the norm bound β. These parameters1199

should be chosen to ensure a desired level of security against known attacks, such as lattice1200

reduction and quantum algorithms [2]. To estimate the security complexity from a lattice1201

perspective, we used the specific MSIS hardness estimator located at the repository below.1202

For the base Module-ISIS instance in the Adh system, we propose the following pa-1203

rameters:1204

• Dimension n = 1281205

• Rank m = 61206

• Modulus q = 2571207

• Norm bound β = 2571208

To estimate the security of the base Module-ISIS instance, we utilize the MSIS estimator1209

from the pq-crystals/security-estimates repository1.1210

7.2 Configuration 1: Smaller Parameters n = 1281211

7.2.1 Parameters1212

• Ring Dimension (n): 1281213

• MSIS Dimension (w): 7681214

• Number of Equations (h): 61215

• Norm Bound (B): 2571216

• Modulus (q): 2571217

7.3 Security Estimates1218

• Dimensions: 983041219

• Block Size: 3831220

• Probability of Success (log2(epsilon)): -79.501221

• Average Vectors per Run (log2 nvector per run): 79.481222

• Length of Shortest Vector (l): 4234.701223

7.3.1 Conclusion1224

The estimator gives us a security level of 112 classical bits, which is lower than acceptable1225

for high-security applications.1226

7.4 Configuration 2: Larger Parameters n = 2561227

7.4.1 Parameters1228

• Ring Dimension (n): 2561229

• MSIS Dimension (w): 15361230

• Number of Equations (h): 61231

• Norm Bound (B): 2571232

• Modulus (q): 2571233

1https://github.com/pq-crystals/security-estimates
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7.5 Security Estimates1234

• Dimensions: 3932161235

• Block Size: 8891236

• Probability of Success (log2(epsilon)): -183.481237

• Average Vectors per Run (log2 nvector per run): 184.481238

• Length of Shortest Vector (l): 6111.571239

7.5.1 Conclusion1240

With a significantly enhanced security level of 260 bits, this n = 256 configuration offers1241

better protection, potentially suitable for environments requiring very high security stan-1242

dards. The increase in ring dimension and MSIS dimension contributes substantially to1243

the heightened security.1244

7.6 Estimated Impact of Chaining1245

The Adh system employs a chaining mechanism, where the output of one Module-ISIS1246

instance is used as the input to the next instance. Let k denote the number of chained1247

instances in the system. The security of the Adh system grows with increasing k, as1248

an adversary would need to solve all k instances of the Module-ISIS+ or Module-ISIS*1249

problem to forge a valid proof. If we assume additive complexity:1250

• For k = 1: The security is equivalent to the base Module-ISIS instance, estimated1251

at least 112 bits.1252

• For k = 2: Security increases to approximately 224 bits.1253

• For k = 3: Security further increases to about 336 bits.1254

• For k = 4: Security reaches around 448 bits, providing high-level security against1255

known attacks.1256

These estimates serve as a theoretical bound on the security of the Adh system and may1257

be revised upwards as the exact hardness of the Module-ISIS relative to Module-SIS is1258

better understood. Additionally, the attack estimates assume the ability to use extremely1259

large block sizes and dimensions that may not be practical.1260

1261

The choice of k provides a trade-off between security and efficiency, with higher values1262

of k offering increased security at the cost of larger proof sizes and longer computation1263

times. The optimal value of k should be determined based on the specific security re-1264

quirements and performance constraints of the application.1265

1266

In addition to the chaining mechanism, the Adh system incorporates other features1267

that contribute to its security, such as the use of rejection sampling to ensure the unifor-1268

mity of the generated vectors and the elimination of zero coefficients to create a complete1269

lattice structure. These features further enhance the system’s resilience against potential1270

attacks.1271

1272

In addition to the chaining mechanism, the Adh system incorporates other features1273

that contribute to its security, such as the use of rejection sampling to ensure the unifor-1274

mity of the generated vectors and the elimination of zero coefficients to create a complete1275

lattice structure. These features further enhance the system’s resilience against potential1276

attacks.1277
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8 Experimental Results1278

To evaluate the resistance of the Adh zero-knowledge proof system against lattice re-1279

duction attacks, we conducted experiments using the fplll library [10], a well-established1280

toolkit for lattice-based cryptanalysis. Our primary focus was to assess the effectiveness1281

of various lattice reduction algorithms, including the Block Korkine-Zolotarev (BKZ)1282

algorithm [5], in finding short vectors within the lattices generated by the Adh system.1283

8.1 FPLL Experimental Setup1284

We designed an experimental setup in which a loop continuously generated matrices1285

representing the lattice structure of the Adh system. These matrices were then fed into1286

the fplll library, where different lattice reduction algorithms were applied to attempt to1287

find short vectors. We specifically investigated the performance of these algorithms for1288

two parameter settings: n = 128 and n = 256, corresponding to the dimensions of the1289

lattice used in the Adh system.1290

8.1.1 BKZ Results1291

The results of the BKZ experiments exhibited a consistent behavior across different block1292

sizes. For both n = 128 and n = 256, the norms of the recovered vectors consistently1293

exceeded an average value of 270. Considering that the norm bound in the Adh system1294

is set to 256, these findings suggest that BKZ is not effective in finding sufficiently short1295

vectors to compromise the security of the system.1296

8.1.2 Non-BKZ Solver Results1297

In addition to BKZ, we explored other lattice reduction techniques, including the Hermite-1298

Korkine-Zolotarev (HKZ) reduction [7], the Shortest Vector Problem (SVP) solvers, and1299

the Closest Vector Problem (CVP) solvers. When applied to lattices with dimension1300

n = 128, these solvers initially appeared to find relatively short vectors within the lattice.1301

However, upon closer inspection, it was revealed that the average norm of the vectors1302

found by these solvers still exceeded 270, failing to breach the norm bound of 256 set in1303

the Adh system.1304

The behavior of non-BKZ solvers against lattices with dimension n = 256 exhibited more1305

variability. In some instances, these solvers returned outputs with higher norm averages1306

compared to the n = 128 case. Moreover, the execution time of these solvers against1307

n = 256 lattices was significantly longer, sometimes taking several hours to complete.1308

8.1.3 Conclusion1309

The experiments conducted with fplll provide valuable insights into the resilience of the1310

Adh zero-knowledge proof system against lattice reduction attacks. Despite the initial1311

appearance of finding short vectors by non-BKZ solvers at dimension n = 128, further1312

analysis revealed that the average norm of the recovered vectors consistently exceeded1313

270, failing to breach the norm bound of 257 set in the Adh system.1314

The inability of both BKZ and non-BKZ solvers to find vectors shorter than the norm1315

bound in the practically relevant dimensions (n = 128 and n = 256) suggests that the Adh1316

system exhibits strong resistance against direct lattice reduction and projection-reduction1317
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attacks. The dense structure of the lattice, achieved through rejection sampling and the1318

elimination of zero coefficients, is believed to contribute to the difficulty of finding short1319

vectors using traditional lattice reduction methods.1320

The variable behavior and occasional crashes encountered with non-BKZ solvers1321

against lattices with dimension n = 256 highlight the complexity and challenges as-1322

sociated with analyzing the security of the Adh system. Further research is needed to1323

fully understand the implications of these observations and to establish rigorous bounds1324

on the system’s resistance against a wider range of cryptanalytic techniques.1325

8.2 Specific Reduction Attack Scenario Analysis1326

In this section, we evaluate the potential impact of the attack presented in the paper1327

”Finding short integer solutions when the modulus is small”[4] by Ducas, Espitau, and1328

Postlethwaite on the Adh system with the parameters: q = 257, B = 256, m = 6,1329

n = 128, and k = 4 chained Module-ISIS+ instances. The attack exploits the Z-shape1330

profile of the reduced basis and performs lattice sieving in projected sublattices to find1331

short solutions.1332

Let β denote the block size used in the BKZ lattice reduction algorithm. The effec-1333

tiveness of the attack depends on the number of q-vectors (nq) remaining in the reduced1334

basis after applying BKZ-β. Table 4 presents the analysis of the attack for various BKZ1335

block sizes. In Scenario 1 (β = 40), the expected number of q-vectors is nq ≈ 12 (based

Scenario β n q r − ℓ Sieving vectors
—1 40 12 -6 - —
—2 60 6 0 - —
—3 80 3 3 2.8 —
—4 100 1 5 16.8 —

Table 4: Revised attack scenarios for different BKZ block sizes

1336

on Table 1 in the paper). The sieving dimension r − ℓ is calculated as follows:1337

1338

ℓ = nq + 1 = 13

r = min ℓ+ β,m+ 1 = min 53, 7 = 7

r − ℓ = 7− 13 = −6

Since the sieving dimension is negative, the attack is not applicable in this scenario.1339

Similarly, in Scenario 2 (β = 60), the sieving dimension is zero, making the attack inap-1340

plicable. In Scenario 3 (β = 80), the expected number of q-vectors is nq ≈ 3 (extrapolated1341

from Table 1). The sieving dimension and the number of sieving vectors are:1342

ℓ = nq + 1 = 4

r = min ℓ+ β,m+ 1 = min 84, 7 = 7

r − ℓ = 7− 4 = 3

Sieving vectors =

(
4

3

) r−ℓ
2

≈ 2.8
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Although the sieving dimension is positive, the probability of a lifted vector being a valid1343

solution is low due to the small ratio between B and q (256/257 ≈ 0.996). Consequently,1344

the attack is unlikely to succeed in this scenario. In Scenario 4 (β = 100), the expected1345

number of q-vectors is nq ≈ 1. The sieving dimension and the number of sieving vectors1346

are:1347

ℓ = nq + 1 = 2

r = min ℓ+ β,m+ 1 = min 102, 7 = 7

r − ℓ = 7− 2 = 5

Sieving vectors =

(
4

3

) r−ℓ
2

≈ 16.8

While the sieving dimension is positive and the number of sieving vectors is larger, the1348

small ratio between B and q still limits the success probability of the attack.1349

8.2.1 Attack Analysis Conclusion1350

Based on the analysis with the parameters (q = 257, n = 128, B = 257), the attack1351

described in the paper appears to have limited effectiveness against the Adh system. The1352

small lattice dimension m and the close proximity of the modulus q to the norm bound1353

B reduce the applicability and success probability of the attack.1354

However, it is essential to note that this analysis focuses solely on the specific attack1355

outlined in the paper and relies on the assumptions made therein. It does not preclude1356

the existence of other attacks or potential improvements to the current attack that could1357

impact the security of the Adh system.1358

8.3 Resistance to State of the Art Projection Reductions1359

A recent paper by Ducas, Espitau, and Postlethwaite [1] presents a new attack on lattice-1360

based cryptosystems that exploits the Z-shape profile of the reduced basis and performs1361

lattice sieving in projected sublattices to find short solutions. However, this attack is not1362

effective against the Adh system due to the high density of the lattice. In the Adh system,1363

the lattice is constructed to be maximally dense, with a packing density of 1. This means1364

that the product of the first minimum of the primal lattice and the first minimum of the1365

dual lattice is much higher than 1:1366

λ1(L) · λ1(L∗)≫ 1 (11)

The high density of the lattice makes it resistant to the new attack, as the success1367

probability of the attack depends on the ratio between the bound B and the modulus1368

q. In the Adh system, this ratio is very close to 1 (B/q ≈ 0.996), which significantly1369

limits the applicability and success probability of the attack. Therefore, while the new1370

attack presented by Ducas et al. is an important advancement in lattice cryptanalysis, it1371

does not pose a significant threat to the security of the Adh system due to the carefully1372

designed high-density lattice structure.1373
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9 Performance Evaluation1374

To assess the performance of the Adh zero-knowledge proof system, we conducted bench-1375

marking experiments on an Apple M2 Max MacBook Pro using Python 3.12.3. We1376

measured the operations per second for key generation, proof generation, and proof ver-1377

ification with two different parameter settings: n = 128 and n = 256. The results are1378

summarized in Table 5. The performance results demonstrate the impact of the param-

Operation n = 128 n = 256
Key Generation 84.92 ops/s 26.54 ops/s
Proof Generation 131.93 ops/s 51.32 ops/s
Proof Verification 890.47 ops/s 613.50 ops/s

Table 5: Performance results for the Adh zero-knowledge proof system.

1379

eter n on the efficiency of the Adh system. As expected, increasing the value of n from1380

128 to 256 leads to a significant decrease in the number of operations per second for all1381

three components: key generation, proof generation, and proof verification.1382

It is important to note that the current implementation of the Adh system is written1383

in pure Python, which is known for its relatively slower execution compared to lower-1384

level languages like C. These numbers represent the lower bound for performance as no1385

optimization efforts have been made to code that was benchmarked. The performance1386

figures presented in Table 5 reflect this limitation and should be considered as a baseline1387

for future optimizations.1388

To achieve better performance, we will implement the Adh system in cross platform1389

ANSI C, taking advantage of hardware vector acceleration techniques where possible.1390

By leveraging the capabilities of modern processors, such as Intel’s Advanced Vector1391

Extensions (AVX) or ARM’s Neon instructions, significant speedups can be obtained in1392

operations like the Number Theoretic Transform (NTT) and polynomial arithmetic.1393

Furthermore, the use of parallel computing techniques and optimized libraries for1394

lattice-based cryptography can further enhance the efficiency of the Adh system. As we1395

feel the final implementation will be significantly more performant, we suggest using these1396

numbers as a heuristic.1397

10 Comparative Analysis1398

The Adh zero-knowledge proof system introduces several novel features that distinguish1399

it from other state-of-the-art proof systems. One of the key advantages of the Adh sys-1400

tem is its reliance on the Module-ISIS problem, which provides a strong foundation for1401

its security in the post-quantum setting. The use of lattice-based cryptography ensures1402

that the Adh system is resistant to attacks by quantum computers, making it a promis-1403

ing candidate for future-proof secure computation. Compared to other zero-knowledge1404

proof systems based on traditional assumptions, such as discrete logarithms or factoring,1405

the Adh system offers a higher level of security and long-term resilience. The Module-1406

ISIS problem, along with its variants Module-ISIS+ and Module-ISIS*, provides a rich1407

and flexible framework for constructing secure proof systems with advanced features like1408

chaining and multi-level proofs.1409
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Another distinctive aspect of the Adh system is its use of nested Number Theoretic1410

Transform (NTT) operations. The NTT plays a crucial role in enabling efficient poly-1411

nomial arithmetic, which is essential for the performance of lattice-based cryptographic1412

protocols. The Adh system leverages the properties of the NTT to achieve fast and1413

compact proof generation and verification, making it suitable for practical applications.1414

The Adh system also incorporates advanced techniques such as rejection sampling1415

and the elimination of zero coefficients to maintain a complete lattice structure. These1416

techniques contribute to the system’s security by reducing the attack surface and making1417

it harder for adversaries to exploit structural weaknesses. The rejection sampling ap-1418

proach ensures the uniformity of the generated vectors, preventing potential biases that1419

could be exploited by attackers.1420

Furthermore, the Adh system supports multiple levels of proof generation and verifica-1421

tion, providing flexibility and adaptability to different security requirements and perfor-1422

mance constraints. This multi-level feature allows for the construction of more complex1423

proof systems and enables the Adh system to be used in a wider range of applications.1424

In comparison to other lattice-based zero-knowledge proof systems, such as those1425

based on the Ring-SIS or Ring-LWE problems, the Adh system offers several advantages.1426

The Module-ISIS problem provides a more flexible and efficient framework for construct-1427

ing proofs, as it allows for the use of smaller moduli and dimensions while maintaining a1428

high level of security. The Adh system’s chaining mechanism and multi-level proofs also1429

enable more advanced features and improved scalability compared to simpler lattice-based1430

proof systems.1431

11 Potential Use Cases and Applications1432

The Adh zero-knowledge proof system, with its unique lattice-based construction and1433

compact key and proof sizes, offers a versatile foundation for various cryptographic ap-1434

plications and protocols. The following subsections explore potential use cases where the1435

Adh system could provide secure and efficient solutions.1436

11.1 Key Exchange Mechanism (KEM)1437

The Adh system’s underlying one-way chosen plaintext attack (OW-CPA) resistant scheme,1438

related to the subset sum problem, can be transformed into an indistinguishability under1439

chosen-ciphertext and prove attack (IND-CCPA) secure key exchange mechanism (KEM).1440

This KEM would enable parties to establish a shared secret key for secure communica-1441

tion, leveraging the hardness of the Module-ISIS problem and its variants. The compact1442

key sizes of the Adh system could lead to efficient key exchange protocols, particularly1443

suited for resource-constrained environments.1444

11.2 Digital Signatures1445

By applying the Fiat-Shamir transform to the Adh system, it is possible to construct exis-1446

tentially unforgeable under chosen message attack (EU-CMA) digital signature schemes.1447

These signatures would allow users to sign messages and verify the authenticity of the1448

signatures, providing a secure means of authentication and non-repudiation. The com-1449

pact signature sizes offered by the Adh system could be advantageous in scenarios where1450
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bandwidth or storage is limited, such as in Internet of Things (IoT) devices or blockchain1451

applications.1452

11.3 Identity-Based and Key-Policy Based Cryptography1453

The Adh system’s lattice construction opens up possibilities for identity-based and key-1454

policy based cryptography. In identity-based cryptography, users’ identities (e.g., email1455

addresses) serve as their public keys, simplifying key management and distribution. Key-1456

policy based cryptography enables fine-grained access control by associating policies with1457

keys, determining who can access encrypted data. The Adh system’s compact key sizes1458

and efficient operations could make it well-suited for implementing these advanced cryp-1459

tographic primitives, enabling secure and flexible access control mechanisms.1460

11.4 Secure Messaging Protocol1461

The PKEMNO NIZK (Public Key Exchange Mechanism with Non-Interactive Zero-1462

Knowledge Opening) secure messaging protocol, introduced in the paper, leverages the1463

unique characteristics of the Adh system. This protocol ensures the confidentiality and in-1464

tegrity of exchanged messages, making it suitable for secure communication applications.1465

The absence of a traditional decryption function and the use of the ZKVolute operation1466

in the Adh system could provide enhanced security and privacy features compared to1467

traditional messaging protocols.1468

11.5 Proof of Knowledge1469

The Adh system’s trapdoor-based proof of knowledge capabilities enable the construction1470

of protocols where a prover can demonstrate knowledge of a secret without revealing it to1471

the verifier. This property has applications in authentication, access control, and privacy-1472

preserving systems. For example, a user could prove their identity or membership in a1473

group without disclosing sensitive information. The zero-knowledge proofs generated by1474

the Adh system could be used to build secure and privacy-enhancing authentication and1475

authorization mechanisms.1476

11.6 Homomorphic Cryptography1477

The Adh system’s homomorphic properties, being a subcategory of ’somewhat’ or ’par-1478

tially’ homomorphic cryptographic systems, enable computations to be performed on1479

encrypted data without decrypting it first. This capability opens up possibilities for1480

privacy-preserving computations, such as secure multiparty computation or outsourced1481

computation on sensitive data. The compact key and ciphertext sizes of the Adh system1482

could make it more practical and efficient compared to other homomorphic encryption1483

schemes, potentially enabling secure computation in resource-constrained environments.1484
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12 Known Issues1485

12.1 Side-Channel Vulnerabilities and Mitigation Techniques1486

While the Adh zero-knowledge proof system demonstrates strong security properties,1487

it is important to consider potential side-channel vulnerabilities, particularly due to its1488

heavy reliance on NTT operations. Side-channel attacks, such as timing attacks or power1489

analysis attacks, can potentially leak sensitive information about the secret key or the1490

internal state of the system. To mitigate side-channel vulnerabilities, several techniques1491

can be employed:1492

• Hardware acceleration: Leveraging hardware acceleration techniques, such as1493

Intel’s AVX (Advanced Vector Extensions) or ARM’s Neon vector math opcodes,1494

can help in reducing the variance in execution time and power consumption. These1495

accelerated instructions provide a more consistent and efficient execution environ-1496

ment, making it harder for attackers to exploit timing or power variations.1497

• Constant-time NTT implementations: Implementing NTT operations in a1498

constant-time manner is crucial to prevent timing-based side-channel attacks. Constant-1499

time NTT algorithms ensure that the execution time is independent of the in-1500

put data, eliminating potential leakage of sensitive information through timing1501

variations. Techniques such as using fixed-point arithmetic, avoiding conditional1502

branches, and employing bit-slicing can contribute to constant-time implementa-1503

tions.1504

• Randomization and masking: Randomization techniques, such as blinding or1505

masking, can be applied to the NTT computations to make them more resilient1506

against side-channel attacks. By introducing random noise or splitting sensitive1507

values into multiple shares, the statistical dependency between the processed data1508

and the leaked side-channel information can be reduced.1509

• Secure memory management: Careful management of sensitive data in memory1510

is essential to prevent memory-based side-channel attacks. Techniques like using1511

secure memory allocation, clearing memory after use, and avoiding memory reuse1512

can help in mitigating memory leakage vulnerabilities.1513

• Oversampling: By measuring probabilistic rates of success of a given operation1514

we can bound a number of samples to be taken for a given operation to ensure1515

one will succeed within a certain range of probability. By exchanging efficiency for1516

computation we may find constant time solutions.1517

13 Open Questions and Future Work1518

The research presented in this paper on the Adh zero-knowledge proof system raises1519

several interesting open questions and potential avenues for future work. While the1520

paper provides a comprehensive analysis of the system’s security and performance, there1521

are still areas that warrant further investigation and exploration.1522

13.1 Verified Formal Security Proofs1523

One important open item is the continued refinement and validation of formal security1524

proofs for the various aspects of the Adh system. While the paper presents empirical1525

evidence, multiple arguments supporting the security of the system, and presents our1526
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formal reductions and proofs, continuous peer review rigorous, mathematical analysis,1527

and refinement over time will provide stronger guarantees. We acknowledge the novelty1528

of some of proofs presented in the paper and encourage peer review and welcome feedback,1529

improvements or corrections.1530

13.2 Parameter Optimization and Trade-offs1531

Another area for future research is the optimization of the Adh system’s parameters and1532

the exploration of trade-offs between security and efficiency. The paper presents specific1533

parameter choices and provides experimental results, but a more comprehensive analysis1534

of parameter selection could yield further improvements. This work will presented in a1535

subsequent paper. Some questions to include:1536

• What is the optimal choice of the prime modulus q and the dimension n to balance1537

security and performance?1538

• How does the number of chained instances k affect the security and efficiency of the1539

system, and what is the optimal value of k for different security levels?1540

• Can the rejection sampling technique be further optimized to reduce the computa-1541

tional overhead while maintaining the desired statistical properties?1542

• Complexity comparison of various combinations of configurations beyond the base1543

cases presented in this work.1544

13.3 Applications and Integration to Protocols1545

The Adh zero-knowledge proof system has the potential to be applied in various crypto-1546

graphic protocols and privacy-preserving applications. Future work will investigate the1547

integration of the Adh system into existing protocols and explore new use cases. Some1548

potential non-standard directions include:1549

• Integrating the Adh system into privacy-preserving authentication protocols, such1550

as anonymous credentials or attribute-based signatures.1551

• Exploring the use of the Adh system in secure multi-party computation protocols,1552

enabling efficient and private computations among multiple participants.1553

• Developing privacy-preserving blockchain applications that leverage the Adh system1554

for confidential transactions and smart contracts.1555

• Supporting Swarm networking.1556

13.4 Long-Term Security and Post-Quantum Cryptography1557

As the field of quantum computing advances, it is crucial to assess the long-term security1558

of cryptographic systems against potential quantum attacks. While the Adh system is1559

based on lattice problems that are believed to be resistant to quantum algorithms, further1560

research is needed to solidify its post-quantum security guarantees. Future work could1561

focus on:1562

• Conducting a thorough analysis of the Adh system’s resistance against known quan-1563

tum algorithms, such as Shor’s algorithm or Grover’s algorithm.1564

• Exploring the use of quantum-resistant primitives, such as quantum-safe hash func-1565

tions or post-quantum digital signature schemes, in conjunction with the Adh sys-1566

tem.1567
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• Investigating the potential impact of future advancements in quantum computing1568

on the security of the Adh system and developing mitigation strategies.1569

In conclusion, the research presented in this paper on the Adh zero-knowledge proof sys-1570

tem opens up a wide range of exciting possibilities for future work. From formal security1571

proofs and parameter optimization to implementation enhancements and practical appli-1572

cations, there are numerous avenues to explore and contribute to the field of lattice-based1573

cryptography and zero-knowledge proofs. The open questions and challenges identified1574

in this section provide a roadmap for researchers and practitioners to further advance the1575

state of the art and strengthen the foundations of the Adh system.1576

14 Conclusion1577

In this work, we introduced the Adh zero-knowledge proof system, a novel lattice-based1578

protocol that achieves compact proofs and strong security guarantees under the Module-1579

ISIS assumption and its variants. Our core technical contributions include:1580

• A comprehensive analysis of the Module-ISIS problem and its connection to the se-1581

curity of Adh, including formal definitions of the ISIS+, ISIS*, and ISIS** variants.1582

• An in-depth study of the effectiveness of BKZ and other lattice reduction techniques1583

against Adh, demonstrating the system’s resistance to conventional and state-of-1584

the-art cryptanalytic attacks.1585

• Concrete parameter selection and performance benchmarks, showcasing Adh’s prac-1586

ticality and efficiency compared to existing post-quantum alternatives.1587

Our work also identified several avenues for further research, including optimizations1588

to the zero-knowledge protocol, additional side-channel countermeasures, and perfor-1589

mance optimizations. By contributing novel cryptographic techniques and rigorous se-1590

curity analysis, this paper aims to advance the state of the art in post-quantum zero-1591

knowledge proofs and lay the foundation for secure and efficient protocols in the quantum1592

computing era.1593

Fundamentally, the Adh system represents a promising step towards achieving the1594

long-standing goal of compact, flexible, and quantum-secure zero-knowledge proofs. Its1595

unique blend of lattice-based techniques and rejection sampling enables new possibili-1596

ties for cryptographic protocol design. We hope this work spurs further innovations at1597

the intersection of lattice cryptography and zero-knowledge, paving the way for a new1598

generation of privacy-preserving technologies that can withstand the challenges of the1599

post-quantum world.1600

A Appendix1601

A.1 Proof of Reduction to Module-ISIS1602

Theorem 11 (Reduction to Module-ISIS). If there exists a probabilistic polynomial-time1603

adversary A that can forge a valid proof in the Adh system with non-negligible probability,1604

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-1605

ISIS problem with non-negligible probability.1606

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system1607

with non-negligible probability. We construct an algorithm B that uses A to solve the1608
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Module-ISIS problem. Given a Module-ISIS instance (A, t, q, n,m, β), B proceeds as1609

follows:1610

1. B sets up the public parameters of the Adh system using the Module-ISIS instance.1611

It sets the modulus to q, the dimension to n, the rank to m, and the norm bound1612

to β.1613

2. B generates the public key pk by computing pk = ZKVolute(sk,pkchal,pkrand),1614

where sk is a randomly generated secret key, pkchal is the public challenge, and1615

pkrand is the public randomness. B sets sk = A and pkchal = t. B sends pk to A.1616

3. A outputs a forged proof (sig,sig,
chalsig

∗
rand).1617

4. B verifies the forged proof using the verification algorithm of the Adh system. If1618

the proof is accepted, B proceeds to the next step. Otherwise, B aborts.1619

5. B computes z = sig∗ − sig, where sig is a valid proof generated by B using the1620

secret key sk.1621

6. If z ̸= 0 and ||z||∞ ≤ 2β, then B outputs z as a solution to the Module-ISIS1622

instance.1623

The analysis of the success probability of B follows similarly to the reduction to Module-1624

ISIS+ in Appendix A.2. If A succeeds in forging a valid proof with non-negligible proba-1625

bility, then z satisfies A · z = t mod q and ||z||∞ ≤ 2β, solving the Module-ISIS instance.1626

The success probability of B is equal to the success probability of A, which is assumed1627

to be non-negligible. Therefore, if the Adh system is susceptible to forgery attacks,1628

then Module-ISIS is solvable with non-negligible probability, contradicting the assumed1629

hardness of Module-ISIS.1630

A.2 Proof of Reduction to Module-ISIS+1631

Theorem 12 (Reduction to Module-ISIS+). If there exists a probabilistic polynomial-1632

time adversary A that can forge a valid proof in the Adh system with non-negligible1633

probability, then there exists a probabilistic polynomial-time algorithm B that can solve1634

the Module-ISIS+ problem with non-negligible probability.1635

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system1636

with non-negligible probability. We construct an algorithm B that uses A to solve the1637

Module-ISIS+ problem. Given a Module-ISIS+ instance (A 1, t 1, . . . , t k, q, n,m, β), B1638

proceeds as follows:1639

1. B sets up the public parameters of the Adh system using the Module-ISIS+ instance.1640

It sets the modulus to q, the dimension to n, the rank to m, and the norm bound1641

to β.1642

2. B generates the public key pk by computing pk = ZKVolute(sk,pk chal,pk rand),1643

where sk is a randomly generated secret key, pk chal is the public challenge, and1644

pk rand is the public randomness. B sends pk to A.1645

3. A outputs a forged proof (sig,sig chal,sig rand∗).1646

4. B verifies the forged proof using the verification algorithm of the Adh system. If1647

the proof is accepted, B proceeds to the next step. Otherwise, B aborts.1648

5. B computes z = sig∗ − sig, where sig is a valid proof generated by B using the1649

secret key sk.1650

6. If z ̸= 0 and ||z|| ∞ ≤ 2β, then B outputs z as a solution to the Module-ISIS+1651

instance.1652

To analyze the success probability of B, we observe that if A succeeds in forging a valid1653

proof with non-negligible probability, then the forged proof (sig,sig chal,sig rand) must1654
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satisfy the verification equation:1655

ZKVolute(pk, sig chal,sig rand) = ZKVolute(sig,pk chal,pk rand) (12)

Substituting pk = ZKVolute(sk,pk chal,pk rand) and rearranging the terms, we obtain:1656

ZKVolute(sk, sig chal,sig rand) = sig∗ (13)

Let z = sig∗ − sig, where sig is a valid proof generated by B using the secret key sk.1657

Then, we have:1658

ZKVolute(sk, sig chal,sig rand) − ZKVolute(sk, sig chal, sig rand) = z (14)

By the linearity of the ZKVolute function, we can rewrite this as:1659

ZKVolute(sk, sig chal∗ − sig chal, sig rand∗ − sig rand) = z (15)

Now, recall that in the Module-ISIS+ problem, we have:1660

A 1 · z = t 1 mod q (16)

A 2 · z = t 2 mod q (17)

... (18)

A k · z = t k mod q (19)

(20)

where Ai = NTT(Ai− 1) · NTT(R) for i = 2, . . . , k, with R being a random matrix in1661

R qm×m. By the construction of the Adh system, we have:1662

A 1 = sk (21)

t 1 = sig chal∗ − sig chal (22)

t 2 = NTT(sig chal∗ − sig chal) · NTT(sig rand∗ − sig rand) (23)

... (24)

t k = NTT(k−1)(sig chal∗ − sig chal) · NTT(k−1)(sig rand∗ − sig rand) (25)

(26)

Therefore, if z ̸= 0 and ||z|| ∞ ≤ 2β, then z is a valid solution to the Module-ISIS+1663

instance. The success probability of B is equal to the success probability of A in forging1664

a valid proof, which is assumed to be non-negligible. Therefore, B solves the Module-1665

ISIS+ problem with non-negligible probability, contradicting the assumed hardness of1666

Module-ISIS+.1667

This reduction demonstrates that if an adversary can forge a valid proof in the Adh1668

system with non-negligible probability, then the Module-ISIS+ problem can be solved1669

with non-negligible probability, contradicting the assumed hardness of Module-ISIS+.1670

Therefore, the Adh system is secure against forgery attacks, assuming the hardness of1671

the Module-ISIS+ problem.1672
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A.3 Proof of Reduction to Module-ISIS*1673

Theorem 13 (Reduction to Module-ISIS*). If there exists a probabilistic polynomial-time1674

adversary A that can forge a valid proof in the Adh system with non-negligible probability,1675

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-1676

ISIS* problem with non-negligible probability.1677

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system1678

with non-negligible probability. We construct an algorithm B that uses A to solve the1679

Module-ISIS* problem. Given a Module-ISIS* instance1680

(A 1, . . . ,A k, t 1, . . . , t k, q, n,m, β), B proceeds as follows:1681

1. B sets up the public parameters of the Adh system using the Module-ISIS* instance.1682

It sets the modulus to q, the dimension to n, the rank to m, and the norm bound1683

to β.1684

2. B generates the public keys pk 1, . . . ,pk k by computing1685

pk i = ZKVolute(sk i,pk chal i,pk rand i), where sk i is a randomly generated1686

secret key, pk chal i is the public challenge, and pk rand i is the public randomness1687

for the i-th instance. B sends pk 1, . . . ,pk k to A.1688

3. A outputs forged proofs1689

1690

(sig 1,sig chal 1,sig rand 1), . . . , (sig k,sig chal k,sig rand k).1691

4. B verifies the forged proofs using the verification algorithm of the Adh system. If1692

all the proofs are accepted, B proceeds to the next step. Otherwise, B aborts.1693

5. For each i = 1, . . . , k, B computes z i = sig i∗ − sig i, where sig i is a valid proof1694

generated by B using the secret key sk i.1695

6. If z i ̸= 0 and ||zi||∞ ≤ 2β for all i = 1, . . . , k, then B outputs (z 1, . . . , z k) as a1696

solution to the Module-ISIS* instance.1697

To analyze the success probability of B, we observe that if A succeeds in forging valid1698

proofs with non-negligible probability, then the forged proofs (sig i,sig chal i,sig rand i)1699

for i = 1, . . . , k must satisfy the verification equations:1700

ZKVolute(pk i, sig chal i,sig rand i) = ZKVolute(sig i,pk chal i,pk rand i) (27)

Substituting pk i = ZKVolute(sk i,pk chal i,pk rand i) and rearranging the terms, we1701

obtain:1702

ZKVolute(sk i, sig chal i,sig rand i) = sig i∗ (28)

Let z i = sig i∗ − sig i, where sig i is a valid proof generated by B using the secret key1703

sk i. Then, we have:1704

ZKVolute(sk i, sig chal i,sig rand i)−ZKVolute(sk i, sig chal i, sig rand i) = z i (29)

By the linearity of the ZKVolute function, we can rewrite this as:1705

ZKVolute(sk i, sig chal i∗ − sig chal i, sig rand i∗ − sig rand i) = z i (30)

Now, recall that in the Module-ISIS* problem, we have:1706

A 1 · z 1 = t 1 mod q A 2 · z 2 = t 2 mod q
... A k · z k = t k mod q (31)
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where t i = mask(Ai·zi− 1)·z i for i = 2, . . . , k, with t 1 = A 1·z 1. By the construction1707

of the Adh system, we have:1708

A i = sk i t 1 = sig chal 1∗ − sig chal 1 t i (32)
1709

t i = mask(ski · zi− 1) · (sig chal i∗ − sig chal i) (33)

for i = 2, . . . , k. Therefore, if z i ̸= 0 and ||zi||∞ ≤ 2β for all i = 1, . . . , k, then1710

(z 1, . . . , z k) is a valid solution to the Module-ISIS* instance. The success probability1711

of B is equal to the success probability of A in forging valid proofs, which is assumed1712

to be non-negligible. Therefore, B solves the Module-ISIS* problem with non-negligible1713

probability, contradicting the assumed hardness of Module-ISIS*.1714

This reduction demonstrates that if an adversary can forge valid proofs in the Adh1715

system with non-negligible probability, then the Module-ISIS* problem can be solved1716

with non-negligible probability, contradicting the assumed hardness of Module-ISIS*.1717

Therefore, the Adh system is secure against forgery attacks, assuming the hardness of1718

the Module-ISIS* problem.1719

A.4 Proof of Reduction to Module-ISIS**1720

Theorem 14 (Reduction to Module-ISIS**). If there exists a probabilistic polynomial-1721

time adversary A that can forge a valid proof in the Adh system with non-negligible1722

probability, then there exists a probabilistic polynomial-time algorithm B that can solve1723

the Module-ISIS** problem with non-negligible probability.1724

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh sys-1725

tem with non-negligible probability. We construct an algorithm B that uses A to solve1726

the Module-ISIS** problem. Given a Module-ISIS** instance1727

1728

(A 1, . . . ,A k, t 1, . . . , t k, p 1, . . . , p k, ω 1, . . . , ω k, n,m, β), B proceeds as follows:1729

1. B sets up the public parameters of the Adh system using the Module-ISIS** in-1730

stance. It sets the moduli to p 1, . . . , p k, the dimension to n, the rank to m, the1731

norm bound to β, and the roots of unity to ω 1, . . . , ω k.1732

2. B generates the public keys pk 1, . . . ,pk k by computing1733

pk i = ZKVolute(sk i,pk chal i,pk rand i), where sk i is a randomly generated1734

secret key, pk chal i is the public challenge, and pk rand i is the public randomness1735

for the i-th instance. B sends pk 1, . . . ,pk k to A.1736

3. A outputs forged proofs (sig 1,sig chal 1,sig rand 1), . . . , (sig k,sig chal k,sig rand k).1737

4. B verifies the forged proofs using the verification algorithm of the Adh system. If1738

all the proofs are accepted, B proceeds to the next step. Otherwise, B aborts.1739

5. For each i = 1, . . . , k, B computes z i = sig i∗ − sig i, where sig i is a valid proof1740

generated by B using the secret key sk i.1741

6. If z i ̸= 0 and ||zi||∞ ≤ 2β for all i = 1, . . . , k, then B outputs (z 1, . . . , z k) as a1742

solution to the Module-ISIS** instance.1743

The analysis of the success probability of B follows similarly to the reduction to Module-1744

ISIS*. If A succeeds in forging valid proofs with non-negligible probability, then the1745

forged proofs (sig i,sig chal i,sig rand i) for i = 1, . . . , k must satisfy the verification1746

equations:1747

ZKVolute(pk i, sig chal i,sig rand i) = ZKVolute(sig i,pk chal i,pk rand i) (34)
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Substituting pk i = ZKVolute(sk i,pk chal i,pk rand i) and rearranging the terms, we1748

obtain:1749

ZKVolute(sk i, sig chal i,sig rand i) = sig i∗ (35)

Let z i = sig i∗ − sig i, where sig i is a valid proof generated by B using the secret key1750

sk i. Then, we have:1751

ZKVolute(sk i, sig chal i,sig rand i)−ZKVolute(sk i, sig chal i, sig rand i) = z i (36)

By the linearity of the ZKVolute function, we can rewrite this as:1752

ZKVolute(sk i, sig chal i∗ − sig chal i, sig rand i∗ − sig rand i) = z i (37)

Now, recall that in the Module-ISIS** problem, we have:1753

A 1 · z 1 = t 1 mod p 1 A 2 · z 2 = t 2 mod p 2
... A k · z k = t k mod p k (38)

where t i = mask(Ai·zi− 1)·z i for i = 2, . . . , k, with t 1 = A 1·z 1. By the construction1754

of the Adh system, we have:1755

A i = sk i t 1 = sig chal 1∗ − sig chal 1 t i = mask(ski · zi− 1) · (sig chal i∗ − sig chal i)
(39)

for i = 2, . . . , k.1756

Therefore, if z i ̸= 0 and ||zi||∞ ≤ 2β for all i = 1, . . . , k, then (z 1, . . . , z k) is a1757

valid solution to the Module-ISIS** instance. The success probability of B is equal to the1758

success probability of A in forging valid proofs, which is assumed to be non-negligible.1759

Therefore, B solves the Module-ISIS** problem with non-negligible probability, contra-1760

dicting the assumed hardness of Module-ISIS**.1761

This reduction demonstrates that if an adversary can forge valid proofs in the Adh1762

system with non-negligible probability, then the Module-ISIS** problem can be solved1763

with non-negligible probability, contradicting the assumed hardness of Module-ISIS**.1764

Therefore, the Adh system is secure against forgery attacks, assuming the hardness of1765

the Module-ISIS** problem.1766

A.5 Proof of Soundness for Module-ISIS+1767

Theorem 15 (Soundness). The Adh zero-knowledge proof system is sound, assuming1768

the hardness of the Module-ISIS problem. That is, a computationally bounded adversary1769

cannot convince the verifier of a false statement, except with negligible probability.1770

Proof. Suppose there exists a probabilistic polynomial-time adversary A that can con-1771

vince the verifier of a false statement with non-negligible probability. We construct an1772

algorithm B that uses A to solve the Module-ISIS problem. Given a Module-ISIS instance1773

(A, t, q, n,m, β), B proceeds as follows:1774

1. B sets up the public parameters of the Adh system using the Module-ISIS instance.1775

It sets the modulus to q, the dimension to n, the rank to m, and the norm bound1776

to β.1777

2. B generates the public key pk by selecting a secret key sk, a public challenge pkchal,1778

and a randomizing value pkrand uniformly at random from the range [1, 256]. It then1779

computes the convolution part of the public key as pk′ = ZKVolute(sk,pkchal,pkrand)1780

and sets pk = (pk′,pkchal,pkrand). B sends pk to A.1781
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3. A outputs a false statement and a proof (sig,sig,
chalsig

∗
rand).1782

4. B verifies the proof using the verification algorithm of the Adh system. The verifica-1783

tion is performed by checking the equivariance condition: ZKVolute(pk, sig,
chalsig

)
rand =1784

ZKVolute(sig∗,pkchal,pkrand). This condition ensures that only the party possess-1785

ing the secret key sk can generate a valid proof that morphs the challenge and1786

randomness in the same way as the public key was generated. The equivariance1787

property is based on the associativity and commutativity of the ZKVolute function,1788

which is a lossy hash function that destroys information while preserving the ability1789

to verify the proof of possession.1790

5. If the proof is accepted, B computes z = sig∗ − sig, where sig is a valid proof1791

generated by B using the secret key sk, a challenge sigchal derived from the message1792

m, and a randomly selected value sigrand.1793

6. If z ̸= 0 and ||z||∞ ≤ 2β, then B outputs z as a solution to the Module-ISIS1794

instance. The condition ||z||∞ ≤ 2β ensures that z is a valid solution to the1795

Module-ISIS problem, as the Adh system’s rejection sampling guarantees that all1796

vectors have non-zero coefficients bounded by β.1797

To analyze the success probability of B, we observe that if A succeeds in convincing1798

the verifier of a false statement with non-negligible probability, then the forged proof1799

(sig,sig,
chalsig

∗
rand) must satisfy the verification equation. The reduction works as follows:1800

If an adversary A can forge a valid proof in the Adh system with non-negligible prob-1801

ability, then B can use A to solve the Module-ISIS problem. By setting up the public1802

parameters and the public key using the Module-ISIS instance, B ensures that a forged1803

proof that passes verification corresponds to a solution to the Module-ISIS problem. The1804

difference between the forged proof and a valid proof generated by B yields a vector z1805

that satisfies the Module-ISIS conditions. In summary, the key steps of the reduction1806

are:1807

Setting up the Adh system using the Module-ISIS instance parameters. Generat-1808

ing the public key using randomly selected values. Obtaining a forged proof from the1809

adversary A. Verifying the forged proof using the equivariance condition. Computing1810

the difference between the forged proof and a valid proof to obtain a solution to the1811

Module-ISIS problem.1812

If the Adh system is not sound, then an adversary A can forge proofs with non-1813

negligible probability, implying that the Module-ISIS problem can be solved with non-1814

negligible probability by B. This contradicts the assumed hardness of the Module-ISIS1815

problem, proving that the Adh system is sound.1816

A.6 Reduction to Module-ISIS1817

Theorem 16 (Reduction to Module-ISIS). If there exists a probabilistic polynomial-time1818

adversary A that can forge a valid proof in the Adh system with non-negligible probability,1819

then there exists a probabilistic polynomial-time algorithm B that can solve the Module-1820

ISIS problem with non-negligible probability.1821

Proof. Suppose there exists an adversary A that can forge a valid proof in the Adh system1822

with non-negligible probability. We construct an algorithm B that uses A to solve the1823

Module-ISIS problem. Given a Module-ISIS instance (A, t, q, n,m, β), B proceeds as1824

follows:1825

1. B sets up the public parameters of the Adh system using the Module-ISIS instance.1826

It sets the modulus to q, the dimension to n, the rank to m, and the norm bound1827
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to β.1828

2. B generates the public key pk by computing pk = ZKVolute(sk,pk chal,pk rand),1829

where sk is a randomly generated secret key, pk chal is the public challenge, and1830

pk rand is the public randomness. B sets sk = A and pk chal = t. B sends pk to1831

A.1832

3. A outputs a forged proof (sig,sig chal,sig rand).1833

4. B verifies the forged proof using the verification algorithm of the Adh system. If1834

the proof is accepted, B proceeds to the next step. Otherwise, B aborts.1835

5. B computes z = sig−sig, where sig is a valid proof generated by B using the secret1836

key sk.1837

6. If z ̸= 0 and ||z|| ∞ ≤ 2β, then B outputs z as a solution to the Module-ISIS1838

instance.1839

The analysis of the success probability of B follows similarly to the reduction to Module-1840

ISIS+ in Appendix A.2. If A succeeds in forging a valid proof with non-negligible prob-1841

ability, then z satisfies A · z = t mod q and ||z|| ∞ ≤ 2β, solving the Module-ISIS1842

instance. The success probability of B is equal to the success probability of A, which1843

is assumed to be non-negligible. Therefore, if the Adh system is susceptible to forgery1844

attacks, then Module-ISIS is solvable with non-negligible probability, contradicting the1845

assumed hardness of Module-ISIS.1846

A.7 Reduction to Dense Subset Sum - Quantum Hardness1847

Theorem 17 (Reduction to Dense Subset Sum). If there exists a probabilistic polynomial-1848

time adversary A that can solve the modified Module-ISIS problem with addition in the1849

Adh system with non-negligible probability, then there exists a probabilistic polynomial-1850

time algorithm B that can solve the dense subset sum problem with density above 0.9408[9]1851

with non-negligible probability.1852

Proof. Suppose there exists an adversary A that can solve the modified Module-ISIS1853

problem with addition in the Adh system with non-negligible probability. We construct1854

an algorithm B that uses A to solve the dense subset sum problem. Given a dense1855

subset sum instance (S, t) with density above 0.94, where S = s1, . . . , sn is a set of1856

positive integers and t is a target sum, B proceeds as follows: B constructs a modified1857

Module-ISIS instance (A, t, q, n,m, β) as follows: Set n = 128 and m = 6 according to1858

the Adh system parameters. Construct a diagonal matrix A = diag(s1, . . . , sn) ∈ Zn×n
q ,1859

where the elements of S are placed on the main diagonal. Construct a target vector1860

t = (t, 0, . . . , 0) ∈ Zn
q , where the first element is the target sum t and the remaining1861

elements are zeros. Choose the modulus q and the norm bound β according to the Adh1862

system parameters. B invokes the adversary A on the modified Module-ISIS instance1863

(A, t, q, n,m, β). If A outputs a solution vector z = (z1, . . . , zn) ∈ Zqn such that A · z =1864

t mod q and ||z||∞ ≤ β, then B outputs z as a solution to the dense subset sum instance.1865

The correctness of the reduction relies on the following observations: The diagonal matrix1866

A constructed by B preserves the density of the original dense subset sum instance.1867

Since the elements of S are placed on the main diagonal of A, the resulting lattice has a1868

density above 0.9408[9], mirroring the density of the subset sum instance. If the adversary1869

A successfully solves the modified Module-ISIS instance, the solution vector z satisfies1870

A · z = t mod q. Expanding this equation, we have:1871 (
s1

. . . sn

)(
z1

... zn

)(
t 0

... 0

)
mod q
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This implies that
∑n

i=1 si · zi = t mod q, which corresponds to a valid solution for the1872

dense subset sum instance. Therefore, if an adversary can solve the modified Module-1873

ISIS problem with addition in the Adh system with non-negligible probability, it would1874

imply the existence of an efficient algorithm for solving the dense subset sum problem,1875

contradicting the assumption that dense subset sum is computationally infeasible for1876

density above 0.9408[9].1877

A.8 Quantum Hardness Estimation1878

The reduction to the dense subset sum problem allows us to provide quantum hardness1879

estimates for the Adh system. We consider two instances of the system, one with n = 1281880

and m = 6, and another with n = 256 and m = 6. According to the improved classical1881

and quantum algorithms for the subset sum problem, as presented by Bonnetain et al.1882

[3], the quantum hardness of the subset sum problem with k elements is estimated to be1883

20.216k.1884

A.8.1 Instance 1: n = 128 and m = 61885

In the case of an n = 128 and m = 6 module system, the total number of elements in the1886

subset sum instance is:1887

k = n ·m
= 128 · 6
= 768

Applying the quantum hardness estimate to this instance, we have:1888

Quantum Hardness = 20.216·k

= 20.216·768

≈ 2165.888

Therefore, the quantum hardness of the Adh system with n = 128 and m = 6 is estimated1889

to be approximately 2166.1890

A.8.2 Instance 2: n = 256 and m = 61891

In the case of an n = 256 and m = 6 module system, the total number of elements in the1892

subset sum instance is:1893

k = n ·m
= 256 · 6
= 1536
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Applying the quantum hardness estimate to this instance, we have:1894

Quantum Hardness = 20.216·k

= 20.216·1536

≈ 2331.776

Therefore, the quantum hardness of the Adh system with n = 256 and m = 6 is estimated1895

to be approximately 2332. These quantum hardness estimates, based on the improved al-1896

gorithms by Bonnetain et al., provide an up-to-date assessment of the Adh system’s1897

resistance against quantum attacks. The estimates suggest that solving the dense sub-1898

set sum problem corresponding to the Adh system instances would require a significant1899

amount of quantum resources, even with the current best-known quantum algorithms.1900

A.9 Density Preservation in Module-ISIS to Module Modulus1901

Subset Sum Reduction1902

Lemma 3. Let n = 128, rank = 6, inf norm = 257, and p = 257. Consider a module-1903

ISIS problem with a rejection filter regime that discards all vectors containing any 0s and1904

retries until a complete system is obtained. Changing the root of unity ω from 3 to 1 in1905

the NTT is equivalent to relaxing the problem to addition. Under these conditions, the1906

module-ISIS problem reduces to a module modulus subset sum problem with 128×6 = 7681907

elements, preserving the density.1908

Proof. In the module-ISIS problem, we have a rank 6 lattice with 6 public vectors A =1909

(a1, a2, . . . , a6), where each vector ai ∈ Zn
q and q = 257. The goal is to find a vector1910

t ∈ Zn
q such that t = Az mod q for some coefficient vector z ∈ Zrank

q . By applying the1911

rejection filter regime, we ensure that all vectors in the lattice have no 0 components,1912

maintaining a dense structure. The density of the lattice is preserved during this process.1913

When we change the root of unity ω from 3 to 1 in the NTT, the modular multiplication1914

in the lattice is relaxed to addition. This relaxation does not affect the density of the1915

lattice, as the structure and the number of elements remain unchanged.1916

The module-ISIS problem with ω = 1 can be viewed as a module modulus subset sum1917

problem. Each coefficient bucket in the NTT corresponds to an element in the subset1918

sum problem. Since we have n = 128 and rank = 6, the total number of elements in the1919

subset sum problem is 128× 6 = 768. Let S = (s1, s2, . . . , s768) be the set of elements in1920

the subset sum problem, where each si ∈ Zq. The goal is to find a subset of S that sums1921

to the target vector t modulo q.1922

The density of the subset sum problem is determined by the ratio of the number of1923

elements to the modulus q. In this case, the density is 1, which is the same as the density1924

of the original module-ISIS problem. Therefore, changing the root of unity from 3 to 1 in1925

the NTT and applying the rejection filter regime reduces the module-ISIS problem to a1926

module modulus subset sum problem with 768 elements while preserving the density.1927

A.10 Zero-Knowledge Proof1928

Theorem 18 (Zero-Knowledge Property). The Adh zero-knowledge proof system satisfies1929

the zero-knowledge property, assuming the hardness of the Module-ISIS problem and the1930

existence of a secure commitment scheme.1931
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Proof. We construct a simulator S that generates proofs indistinguishable from real proofs1932

without access to the secret key. Given a public key pk and a statement to be proved, S1933

proceeds as follows:1934

1. S generates a random commitment com using the commitment scheme.1935

2. S computes the challenge sig chal as a function of the statement and com using1936

the Fiat-Shamir heuristic.1937

3. S samples a random vector sig rand and computes the proof sig as1938

sig = ZKVolute(pk, sig chal, sig rand).1939

4. S outputs the proof (sig, sig chal, sig rand).1940

To show that the simulated proofs are indistinguishable from real proofs, we consider the1941

following hybrid arguments:1942

• Hybrid 1: Real proofs generated using the secret key.1943

• Hybrid 2: Proofs generated using the simulator S.1944

The indistinguishability of Hybrid 1 and Hybrid 2 relies on the following arguments:1945

• The commitment scheme is hiding, ensuring that com does not reveal any infor-1946

mation about the secret key.1947

• The Fiat-Shamir heuristic ensures that the challenge sig chal is uniformly dis-1948

tributed and independent of the secret key.1949

• The ZKVolute function is a one-way function, assuming the hardness of the Module-1950

ISIS problem. Given pk, sig chal, and sig rand, it is computationally infeasible to1951

recover the secret key.1952

Therefore, the proofs generated by the simulator S are computationally indistinguishable1953

from real proofs, establishing the zero-knowledge property of the Adh system.1954

A.11 Algorithms1955

A.12 Notes1956

Algorithm variable notes:1957

H is a hash function in the SHA3 family1958

m is a theoretical message to be signed1959

n is dimension1960

p is the first level of NTT modulus1961

ω is the first level of NTT root of unity1962

k is the number of instances of module-ISIS problem to create1963

ps is the array of NTT moduli in a multi stage instance1964

ws is the array of related roots of unity1965

l is number of ’levels’ of unique NTT stage or len(ps)1966

NTT DIST is the number of NTT representations to check before abort1967

A.13 Module-ISIS+ Parameters1968

n=128 or 2561969

ps=[257,257]1970

ws=[3,3]1971

rnds=41972

sk count=11973

iters=41974
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β = 2561975

rank = 61976

A.14 Module-ISIS* Parameters1977

n=128 or n=2561978

ps=[257,257]1979

ws=[3,3]1980

rnds=41981

sk count=51982

iters=41983

β = 2561984

rank = 61985

A.15 Module-ISIS** Parameters1986

n=128 or n=2561987

ps=[257,257,65537]1988

ws=[3,3,282]1989

rnds=41990

sk count=51991

iters=41992

β = 2561993

rank = 61994

1995

A.16 Algorithms1996

Algorithm 4 Expand Hash Function

Designed for XOF hash algorithm=SHAKE256 and β = 256

Require: message, prime, size, hash algorithm
Ensure: coefficients

orig message← message
while True do

hash object← hash algorithm(message)
hash value← hash object.digest(size)
hash int← int.from bytes(hash value, byteorder =′ big′)
coefficients← []
for i← 0 to size− 1 do

coefficients.append(int(hash value[i])) ▷ 0-255
end for
if poly check(coefficients) = 0 then

return coefficients
end if
message← orig message||str(hash value) ▷ To keep input to 2x

end while

Key Generation (strong generate keys isis star):1997
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Algorithm 5 Blind Value Computation
This function is used to randomize the random value by adding it to the sum context values to reduce an adversaries ability
to influence the computation.

Require: context values, modulus
Ensure: blinded value

blinded value← []
for vec in context values do

blinded value← pointwise add(blinded value, vec,modulus)
end for
return blinded value

Algorithm 6 select representation
Require: vec, p, w
Ensure: best vec
1: input key ← tuple(vec), p, w
2: best← vec.count(0)
3: best vec← vec.copy()
4: count← 0
5: for i← 0 to NTT DIST do ▷ 2 for p = 257 ω = 3
6: vec← ntt(vec, p, w)
7: if vec.count(0) ≤ best then
8: best vec← vec.copy()
9: end if
10: if vec.count(0) = 0 then
11: return (vec, count) ▷ Found suitable vector
12: end if
13: count← count+ 1
14: end for
15: return (best vec, count) ▷ Could not find full vector, next best

Algorithm 7 Polynomial Support Check - polycheck
Ensure NTT representation of a full vector is full across each configured level

Require: poly, moduli, unity roots
Ensure: support

support← poly.count(0)
for i← 1 to length(moduli) do

p← moduli[i]
w ← unity roots[i]
poly, c← select representation(poly, p, w)
support← support+ poly.count(0)

end for
return support

Algorithm 8 Key Generation with Rejection Sampling(Module-ISIS+)
Require: n, base modulus, ZKV olute ProofGen, poly check, generate nonzero vector
Ensure: pk a, sk I, pk chal, rand pk

support← 1
while support ̸= 0 or pk a.count(0) ̸= 0 or poly check(pk a) ̸= 0 do

pk chal← generate non zero vector(n, base modulus)
while poly check(pk chal) ̸= 0 do

pk chal← generate nonzero vector(n, base modulus)
end while
sk I ← generate non zero vector(n, base modulus)
while polycheck(sk I) ̸= 0 do

sk I ← generate non zero vector(n, base modulus)
end while
rand pk ← generate non zero vector(n, base modulus)
while poly check(rand pk) ̸= 0 do

rand pk ← generatenonzerovector(n, base modulus)
end while
pk a, support← ZKV olute ProofGen(sk I, rand pk, pk chal)

end while
return pk a, sk I, pk chal, rand pk
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Algorithm 9 Key Generation (Module-ISIS*)
Require: n, base modulus, ZKV olute ProofGen isis star, poly check, generate non zero vector, rnds
Ensure: pk a, sk array, pk chal, rand pk

support← 1
sk array ← []
while support ̸= 0 or pk a.count(0) ̸= 0 or poly check(pk a) ̸= 0 do

pk chal← generate non zero vector(n, base modulus)
while poly check(pk chal) ̸= 0 do

pk chal← generate non zero vector(n, base modulus)
end while
for ← 0 to rnds do

sk i← generate non zero vector(n, base modulus)
while poly check(sk i) ̸= 0 do

sk i← generate non zero vector(n, base modulus)
end while
sk array.append(sk i)

end for
rand pk ← generate non zero vector(n, base modulus)
while poly check(rand pk) ̸= 0 do

rand pk ← generate non zero vector(n, base modulus)
end while
pk a, support← ZKV olute ProofGen isis star(sk array, rand pk, pk chal)

end while
return pk a, sk array, pk chal, rand pk

Algorithm 10 Core Proof Generation
Require: m, sk I, n, base modulus, Hash To Poly, ZKV olute ProofGen, polycheck, generate full vector
Ensure: SIG

challenge vector ← Hash To Poly(m)
rand sig ← generate full vector(n, base modulus)
while rand sig.count(0) ̸= 0 and polycheck(rand sig) ̸= 0 do

rand sig ← generate full vector(n, base modulus)
end while
SIG← ZKV olute ProofGen(sk I, rand sig, challenge vector, False)
while SIG.count(0) ̸= 0 do

rand sig ← generate full vector(n, base modulus)
SIG← ZKV olute ProofGen(sk I, rand sig, challenge vector, False)

end while
return SIG
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Algorithm 11 ZKVolute ProofVerify
Require: PROOF PK, pk chal, PROOF SIG, sig chal, rand pk, rand sig
Ensure: result

p← base moduli, w ← base root
sig chal, ← select representation(sig chal, p, w)
pk chal, ← select representation(pk chal, p, w)
rand pk, ← select representation(rand pk, p, w)
rand sig, ← select representation(rand sig, p, w)
pk orig ← pk chal, sig orig ← sig chal
pk iterables← list(), sig iterables← list()
pk iterable← pk chal, sig iterable← sig chal
for ← 0 to iters− 1 do

pk iterable, ← select representation(pk iterable, p, w)
sig iterable, ← select representation(sig iterable, p, w)
pk iterables.append(pk iterable), sig iterables.append(sig iterable)

end for
for it← 0 to iters− 1 do

if it = 0 then
pk chal2← pointwise mul(pk chal, pk iterables[0], p)
sig chal2← pointwise mul(sig chal, sig iterables[0], p)

else
pk chal2← pointwise mul(pk chal2, pk iterables[it], p)
sig chal2← pointwise mul(sig chal2, sig iterables[it], p)

end if
end for
if iters > 0 then

pk chal← pk chal2, sig chal← sig chal2
end if
new sig chal← pointwise mul(sig orig, rand sig, p)
new sig chal← pointwise add(new sig chal, sig chal, p)
new sig chal← pointwise add(new sig chal, rand sig, p)
new pk chal← pointwise mul(pk orig, rand pk, p)
new pk chal← pointwise add(new pk chal, pk chal, p)
new pk chal← pointwise add(new pk chal, rand pk, p)
chk rep1← pointwise mul(sig chal, PROOF PK, p)
chk rep2← pointwise mul(pk chal, PROOF SIG, p)
chk rep1← pointwise mul(chk rep1, rand sig, p)
chk rep2← pointwise mul(chk rep2, rand pk, p)
for i1← 0 to rnds− 1 do

chk rep1← pointwise mul(chk rep1, sig orig, p)
chk rep1← pointwise mul(chk rep1, new sig chal, p)
chk rep1← pointwise mul(chk rep1, sig iterables[i1 mod iters], p)
new sig chal← pointwise add(new sig chal, new sig chal, p)
new sig chal← pointwise mul(new sig chal, new sig chal, p)

end for
for i2← 0 to rnds− 1 do

chk rep2← pointwise mul(chk rep2, pk orig, p)
chk rep2← pointwise mul(chk rep2, new pk chal, p)
chk rep2← pointwise mul(chk rep2, pk iterables[i2 mod iters], p)
new pk chal← pointwise add(new pk chal, new pk chal, p)
new pk chal← pointwise mul(new pk chal, new pk chal, p)

end for
result← (chk rep1 = chk rep2)
return result

64



Algorithm 12 ZKVolute ProofGen (Module-ISIS+)
Require: sk I, rand chal, chal
Ensure: proof rep

for i, (p, w) in enumerate(list(zip(ps, ws))) do
sk rep I ← select representation(sk I, p, w)
rand chal← select representation(rand chal, p, w)
chal← select representation(chal, p, w)
iterables← list()
ntt rep← chal
blinded values← list()
root chal← chal
blinded values.append(root chal)
if iters > 0 then

for ← 0 to iters− 1 do
ntt rep← select representation(ntt rep, p, w)
blinded values.append(ntt rep)
iterables.append(ntt rep)

end for
for z ← 1 to iters− 1 do

ntt rep← pointwise mul(ntt rep, iterables[z], p)
blinded values.append(ntt rep)

end for
chal← ntt rep

end if
if i = 0 then

secret rep← sk I
target vector ← pointwise mul(chal, secret rep, p)
proof rep← pointwise mul(target vector, rand chal, p)
new chal← pointwise mul(root chal, rand chal, p)
new chal← pointwise add(new chal, chal, p)
new chal← pointwise add(new chal, rand chal, p)
for xx← 0 to rnds− 1 do

proof rep← pointwise mul(proof rep, root chal, p)
proof rep← pointwise mul(proof rep, new chal, p)
proof rep← pointwise mul(proof rep, iterables[xx%iters], p)
new chal← pointwise mul(new chal, new chal, p)
new chal← pointwise add(new chal, new chal, ps[i])

end for
proof hld← proof rep

end if
if i ≥ 1 then

proof rep← ntt(proof rep, p, w)
proof hld← ntt(proof hld, p, w)
proof rep← pointwise add(proof rep, proof rep, p)
proof rep← pointwise add(proof rep, proof hld, p)

end if
end for
for i, (p, w) in enumerate(reversed(list(zip(ps, ws)))) do

if i < len(ps)− 1 then
proof rep← ntt inverse(proof rep, p, w, original n = n)

end if
end for
return proof rep

65



Algorithm 13 ZKVolute Proof Generation (Module-ISIS*)
Require: sk array, rand chal, chal, ps, ws, iters, rnds, pointwise mul, pointwise addition, ntt, ntt inverse, best ntt
Ensure: proof rep

for i, (p, w) in enumerate(list(zip(ps, ws))) do
sk rep array ← [best ntt(sk, p, w)[0] for sk in sk array]
rand chal, ← best ntt(rand chal, p, w)
chal, ← best ntt(chal, p, w)
iterables← list()
ntt rep← chal.copy()
blinded values← list()
root chal← chal.copy()
blinded values.append(root chal)
tmp iterable← chal.copy()
if iters > 0 then

for ← 0 to iters− 1 do
tmp iterable, ← best ntt(tmp iterable, p, w)
blinded values.append(tmp iterable)
iterables.append(tmp iterable)

end for
for z ← 0 to iters− 1 do

if z = 0 then
tmp iterable2← pointwise mul(root chal, iterables[0], p)
blinded values.append(tmp iterable2)

else
tmp iterable2← pointwise mul(tmp iterable2, iterables[z], p)
blinded values.append(tmp iterable2)

end if
end for
chal← tmp iterable2
blinded values.append(chal)

end if
if i = 0 then

secret rep← sk rep array[0]
target vector ← pointwise mul(chal, secret rep, p)
proof rep← pointwise mul(target vector, rand chal, p)
new chal← pointwise mul(root chal, rand chal, p)
new chal← pointwise addition(new chal, chal, p)
new chal← pointwise addition(new chal, rand chal, p)
for xx← 0 to rnds− 1 do

proof rep← pointwise mul(proof rep, sk rep array[xx+ 1], p)
proof rep← pointwise mul(proof rep, root chal, p)
proof rep← pointwise mul(proof rep, new chal, p)
proof rep← pointwise mul(proof rep, iterables[xx mod iters], p)
new chal← pointwise mul(new chal, new chal, p)
new chal← pointwise addition(new chal, new chal, p)

end for
proof hld← proof rep

end if
if i ≥ 1 then

proof rep← ntt(proof rep, p, w)
proof hld← ntt(proof hld, p, w)
proof rep← pointwise addition(proof rep, proof rep, p)
proof rep← pointwise addition(proof rep, proof hld, p)

end if
end for
for i, (p, w) in enumerate(reversed(list(zip(ps, ws)))) do

if i < len(ps)− 1 then
proof rep← ntt inverse(proof rep, p, w, original n = n)

end if
end for
return proof rep
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A.17 Empirical Evidence for Zero-Knowledge Property1998

The zero-knowledge property ensures that a proof generated by the Adh system does1999

not reveal any information about the secret key, except for the validity of the statement2000

being proven. We present empirical evidence supporting the zero-knowledge property of2001

the Adh system using a comprehensive simulator-based approach and rigorous statistical2002

testing[6].2003

A.17.1 Simulator-based Approach2004

We constructed a simulator to generate a large number of real proofs (using genuine2005

secret keys) and fake proofs (using randomly generated or slightly perturbed keys). The2006

simulator ensures that the fake proofs are generated in a way that mimics the behavior of2007

real proofs, including the use of the same challenges and random values. The simulator2008

also adjusts the random challenges to ensure that both real and fake proofs can be2009

generated successfully, maintaining the indistinguishability between them. The simulator2010

follows these key steps:2011

1. Generate a valid key pair (public key and secret keys) for the Adh system, rejecting2012

any keys that contain zero coefficients to prevent the exposure of internal patterns.2013

2. Create a Fiat-Shamir style challenge by generating a random vector and ensuring2014

it meets the non-zero constraint.2015

3. Generate a real proof using the genuine secret keys, the challenge, and a random2016

blinding vector.2017

4. Generate a fake proof using slightly perturbed or randomly generated secret keys,2018

the same challenge, and the same random blinding vector.2019

5. Verify both the real and fake proofs using the Adh verification algorithm, ensuring2020

that the real proof is accepted and the fake proof is rejected.2021

6. Store the real and fake proofs for statistical analysis.2022

The simulator was run for a large number of iterations (at least 300 million proof pairs) to2023

collect a significant sample size for statistical testing. Throughout the simulations, no real2024

proofs failed verification, and no fake proofs were accepted, providing strong empirical2025

evidence for the soundness and forgery resistance of the Adh system.2026

A.17.2 Statistical Tests2027

To assess the indistinguishability of real and fake proofs, we performed a comprehensive2028

suite of statistical tests on the collected data. These tests evaluate various properties of2029

the proof distributions, such as means, standard deviations, correlations, and statistical2030

distances. The following tests were conducted:2031

• Chi-squared test2032

• Kolmogorov-Smirnov test2033

• Anderson-Darling test2034

• Mann-Whitney U test2035

• Kruskal-Wallis test2036

• Shapiro-Wilk test2037

• Pearson correlation test2038

• Mutual information test2039

• Autocorrelation test2040

• Higher-order moments test2041
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The tests were applied to the real and fake proof distributions, and the results were an-2042

alyzed to determine if there were any statistically significant differences between them.2043

Across millions of runs and various configurations, the statistical tests consistently demon-2044

strated the indistinguishability of real and fake proofs.2045

The p-values obtained from the tests were consistently above the significance threshold2046

(e.g., 0.05), indicating that the null hypothesis (i.e., the distributions of real and fake2047

proofs are the same) cannot be rejected. The correlation coefficients between real and2048

fake proofs were close to zero, suggesting no significant correlation between them. The2049

mutual information between real and fake proofs was negligible, indicating minimal shared2050

information. The higher-order moments and autocorrelation tests further supported the2051

randomness and independence of the proofs.2052

A.17.3 Machine Learning Test2053

To further assess the distinguishability of real and fake proofs, we applied a gradient2054

boosting classifier to the proof data. The classifier was trained on a subset of the real2055

and fake proofs and then tested on a held-out set to evaluate its ability to distinguish2056

between them. Across multiple runs, the classifier consistently achieved an accuracy close2057

to 50%, indicating that it was unable to distinguish between real and fake proofs better2058

than random guessing. This result provides additional evidence for the zero-knowledge2059

property of the Adh system, as even advanced machine learning algorithms were unable2060

to differentiate between the two types of proofs.2061

A.17.4 Empirical Conclusion2062

The empirical evidence obtained from the simulator-based approach and the statistical2063

tests provides compelling support for the presence of the zero-knowledge property in2064

the Adh system. The extensive testing, covering a wide range of configurations and a2065

large number of proofs, demonstrates the consistent indistinguishability of real and fake2066

proofs. The inability to forge valid proofs and the resistance to advanced distinguishing2067

techniques further strengthen the case for the zero-knowledge property.2068

While a formal mathematical proof of the zero-knowledge property is still pending,2069

the empirical results obtained from this rigorous experimental setup strongly suggest2070

that the Adh system achieves zero-knowledge. The simulator-based approach, combined2071

with comprehensive statistical testing and machine learning analysis, provides a robust2072

framework for assessing the zero-knowledge property and lays the foundation for fur-2073

ther theoretical analysis and formal proofs. The detailed experimental setup and results2074

supporting the zero-knowledge property are provided here.2075

A.18 Zero-Knowledge Proof2076

Theorem 19 (Zero-Knowledge Property). The Adh zero-knowledge proof system satisfies2077

the zero-knowledge property, assuming the hardness of the Module-ISIS problem and the2078

existence of a secure commitment scheme.2079

Proof. We construct a simulator S that generates proofs indistinguishable from real proofs2080

without access to the secret key. Given a public key pk and a statement to be proved, S2081

proceeds as follows:2082

1. S generates a random commitment com using the commitment scheme.2083
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2. S computes the challenge sig chal as a function of the statement and com using2084

the Fiat-Shamir heuristic.2085

3. S samples a random vector sig rand and computes the proof sig as:2086

sig = ZKVolute(pk, sig chal, sig rand)

4. S outputs the proof (sig, sig chal, sig rand).2087

To show that the simulated proofs are indistinguishable from real proofs, we consider the2088

following hybrid arguments:2089

• Hybrid 1: Real proofs generated using the secret key.2090

• Hybrid 2: Proofs generated using the simulator S.2091

We now argue that Hybrid 1 and Hybrid 2 are computationally indistinguishable based2092

on the following:2093

• The commitment scheme is computationally hiding, ensuring that com does not2094

reveal any information about the secret key to a computationally bounded adver-2095

sary.2096

• The Fiat-Shamir heuristic ensures that the challenge sig chal is uniformly dis-2097

tributed and independent of the secret key, assuming the random oracle model.2098

• The ZKVolute function is a one-way function, assuming the hardness of the Module-2099

ISIS problem. Given pk, sig chal, and sig rand, it is computationally infeasible to2100

recover the secret key.2101

Suppose there exists a polynomial-time distinguisher D that can distinguish between2102

Hybrid 1 and Hybrid 2 with non-negligible advantage. We construct a polynomial-time2103

adversary A that uses D to break either the hiding property of the commitment scheme2104

or the one-wayness of the ZKVolute function.2105

A receives a public key pk and a statement to be proved. It then generates two proofs,2106

one using the real prover algorithm and one using the simulator S. A sends the two proofs2107

to the distinguisher D. If D can distinguish between the real and simulated proofs with2108

non-negligible advantage, then A can use this to break either the hiding property of the2109

commitment scheme or the one-wayness of the ZKVolute function, depending on D’s out-2110

put. This contradicts the assumptions of a secure commitment scheme and the hardness2111

of Module-ISIS. Therefore, the proofs generated by the simulator S are computationally2112

indistinguishable from real proofs, establishing the zero-knowledge property of the Adh2113

system.2114

A.19 Probabilistic Completeness2115

Theorem 20 (Probabilistic Completeness). Let A be the Adh zero-knowledge proof sys-2116

tem with dimension n, norm bound β, and a fixed challenge vector c. If the prover has2117

a probability p of passing the rejection sampling step for a given random vector, then the2118

probability of finding a valid proof for the fixed challenge c approaches 1 as the number2119

of attempts grows exponentially with respect to n.2120

Proof. Consider a scenario where the prover has a fixed challenge vector c and needs2121

to generate a valid proof. The prover selects a random vector r of dimension n with2122

coefficients bounded by the norm β. The prover then attempts to generate a proof by2123

passing r through the rejection sampling step. Let p be the probability of the prover2124

passing the rejection sampling step for a given random vector r. If the prover fails the2125
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rejection sampling step, they simply select a new random vector and try again. The2126

probability of failing to find a valid proof after k attempts is given by:2127

P (failure after k attempts) = (1− p)k (40)

As the number of attempts k grows, the probability of failure decreases exponentially.2128

In the Adh system, the dimension n is typically chosen to be either 128 or 256, and the2129

norm bound β is set to 257. For n = 128, the prover has 257128 possible random vectors2130

to choose from. Even with a conservative probability of passing the rejection sampling2131

step, say p = 0.05, the probability of failure after k attempts is:2132

P (failure after k attempts) = (1− 0.05)k = 0.95k (41)

As k approaches 257128, the probability of failure becomes negligibly small. Similarly, for2133

n = 256, the prover has 257256 possible random vectors to choose from. With the same2134

conservative probability p = 0.05, the probability of failure after k attempts is:2135

P (failure after k attempts) = (1− 0.05)k = 0.95k (42)

As k approaches 257256, the probability of failure becomes even smaller. Therefore, given2136

the extremely large number of possible random vectors and the ability of the prover to2137

repeatedly attempt rejection sampling, the probability of finding a valid proof for a fixed2138

challenge vector approaches 1. While this argument does not provide an absolute proof of2139

completeness, it demonstrates that the Adh system achieves a strong form of probabilistic2140

completeness. The chances of the prover failing to find a valid proof for a given challenge2141

are negligibly small, assuming a reasonable probability of passing the rejection sampling2142

step.2143

This probabilistic completeness argument highlights the effectiveness of the rejection2144

sampling technique used in the Adh system. By allowing the prover to repeatedly select2145

new random vectors until a valid proof is found, the system ensures that the prover can2146

successfully generate proofs for any given challenge with overwhelming probability. The2147

conservative estimate of a 5% success probability for each attempt further strengthens the2148

argument, as the actual success probability in the Adh system is typically much higher2149

(closer to 60% emperically). This means that the prover can find a valid proof with even2150

fewer attempts in practice.2151

Rejection sampling is also applied during the challenge generation process on the2152

hash of message as m. If m produces a chal that fails the rejection sampling test, m2153

is first copied to a temporary variable h val and a loop where h val ← H(m||h val) is2154

iterated with no maximum number of attempts. If the chal that is produced by h val2155

passes rejection sampling the loop terminates. As the number of attempts is essentially2156

unbounded, this intuitive result is not formally proven under random oracle assumptions.2157

The completeness of the Adh system relies on the vast number of possible random2158

vectors and the efficiency of the rejection sampling process. As the dimension n and the2159

norm bound β increase, the probability of failure diminishes rapidly, providing a strong2160

assurance of completeness. While this probabilistic argument may not constitute an2161

absolute proof of completeness, it provides a compelling justification for the completeness2162

property of the Adh system based on the overwhelming likelihood of success.2163

Conjecture 4 (Unlikelihood of Violating Shannon-Nyquist Sampling Theorem in the2164

Adh System). The recent advancements in quantum algorithms for solving the Learn-2165

ing with Errors (LWE) problem, particularly the use of Gaussian functions with complex2166
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variances and the exploitation of the Karst wave feature in the Quantum Fourier Trans-2167

form (QFT) domain, have raised concerns about the potential impact on the security of2168

lattice-based cryptographic systems like the Adh zero-knowledge proof system.2169

However, it is important to consider the fundamental principles of information theory,2170

such as the Shannon-Nyquist[11] sampling theorem, when assessing the likelihood of a2171

quantum computer being able to violate these principles in the context of the Adh system.2172

The Shannon-Nyquist sampling theorem states that a signal can be perfectly reconstructed2173

from its samples if the sampling rate is at least twice the highest frequency component2174

in the signal. In the context of the Adh system, which employs the Number Theoretic2175

Transform (NTT) for polynomial multiplication, the NTT can be viewed as a form of2176

sampling in the frequency domain. Given the structure and parameters of the Adh system,2177

it seems unlikely that a quantum computer, even with the advanced techniques like the2178

Karst wave, would be able to violate the Shannon-Nyquist sampling theorem and perfectly2179

reconstruct the undersampled signal in the NTT domain. The reasons for this assessment2180

are as follows:2181

• The Adh system operates over finite fields, and the NTT is a discrete transform2182

that preserves the algebraic structure of the underlying ring. The sampling rate in2183

the NTT domain is determined by the choice of parameters and the structure of the2184

polynomial ring.2185

• The security of the Adh system relies on the hardness of the Module-ISIS problem,2186

which is based on finding short integer solutions to linear equations. The problem2187

is designed to be computationally infeasible, even for quantum computers, when the2188

parameters are appropriately chosen.2189

• The use of rejection sampling and the careful selection of parameters in the Adh2190

system ensure that the resulting lattices have a high dimension and a large minimum2191

distance, making it difficult for any algorithm, including quantum algorithms, to find2192

short vectors and solve the underlying Module-ISIS problem.2193

While the Karst wave technique exploits certain periodic patterns in the QFT domain, it2194

is not clear whether such patterns exist or can be efficiently exploited in the NTT domain2195

of the Adh system. Furthermore, even if such patterns were found, it is unlikely that they2196

would enable a quantum computer to violate the Shannon-Nyquist sampling theorem and2197

perfectly reconstruct the undersampled signal.2198

In this updated conjecture, we emphasize the unlikelihood of a quantum computer2199

being able to violate the Shannon-Nyquist sampling theorem in the context of the Adh2200

system. We highlight the reasons behind this assessment, including the discrete nature2201

of the NTT, the hardness of the underlying Module-ISIS problem, and the careful pa-2202

rameter selection and rejection sampling techniques used in the Adh system. However,2203

we also acknowledge the rapid evolution of the field of quantum computing and the pos-2204

sibility of new techniques and insights emerging in the future. We stress the importance2205

of maintaining a cautious approach, actively monitoring developments, and conducting2206

regular security assessments to ensure the long-term security of the Adh system against2207

potential quantum threats.2208

A.20 Proof of Completeness2209

Theorem 21 (Completeness). The Adh zero-knowledge proof system is complete. That2210

is, an honest prover can always convince the verifier of a true statement.2211
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Proof. Let (pk, sk) be a valid key pair generated by the key generation algorithm of the2212

Adh system, where pk is the public key and sk is the secret key. Let m be a message2213

and sig chal be the signature challenge derived from m. An honest prover, possessing2214

the secret key sk, generates a proof (sig, sig chal, sig rand) as follows:2215

1. Generate a uniformly random signature randomness sig rand ∈ R qm with coeffi-2216

cients in the range [1, q − 1].2217

2. Apply rejection sampling to ensure that sig rand is a full vector.2218

3. Compute the proof sig as sig = ZKVolute(sk, sig chal, sig rand).2219

The verifier checks the validity of the proof by computing:2220

lhs = ZKVolute(pk, sig chal, sig rand)

rhs = ZKVolute(sig,pk chal,pk rand)

and verifying that lhs = rhs. By the construction of the Adh system and the properties2221

of the ZKVolute function, we have:2222

lhs = ZKVolute(pk, sig chal, sig rand)

= ZKVolute(ZKVolute(sk,pk chal,pk rand), sig chal, sig rand)

= ZKVolute(sk,ZKVolute(pk chal, sig chal, sig rand),pk rand)

= ZKVolute(sk, sig chal, sig rand) = sig

= ZKVolute(sig,pk chal,pk rand) = rhs

2223

Therefore, an honest prover, possessing the secret key sk, can always generate a valid2224

proof that convinces the verifier, proving the completeness of the Adh zero-knowledge2225

proof system2226

A.21 Conjecture on Entropy Expansion and Information Loss2227

in Module-ISIS** with Higher-Dimensional NTT Mixing2228

and Reduction2229

Conjecture 5 (Entropy Expansion and Information Loss in Module-ISIS** with High-2230

er-Dimensional NTT Mixing and Reduction). Let L be an instance of the Module-ISIS**2231

problem with a prime modulus p1 = 257 (in a zero free regime) and a higher-dimensional2232

prime modulus p2 = 65537. Let x ∈ Zp1n be a vector representing a proof in the Adh2233

system, and let H(x) denote the Shannon entropy of x. Consider the following transfor-2234

mation:2235

1. Compute the NTT representation of x in the field Zp1, denoted as X1 = NTTp1(x).2236

2. Forward transform X1 to the field Zp2, denoted as X2 = NTTp2(X1).2237

3. Perform modular addition of X2 with itself in the field Zp2, denoted as Y2 =2238

X2⊕X2, where ⊕ represents element-wise modular addition.2239

4. Invert the NTT representation of Y2 back to the field Zp1, denoted as y = INTTp1(Y2).2240

We conjecture that the modular reduction from the higher-dimensional field Zp2 back to2241

the original field Zp1 is the primary cause of the observed high entropy in the output vector2242

y. The fact that the Shannon entropy of y approaches a nearly perfect 8 bits per element,2243

which is the maximum possible entropy for elements in Z257 with a 257 norm, suggests2244

that the modular reduction step may lead to a significant loss of structural information2245

about the underlying lattice.2246
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During the transformation process, the structural information of the lattice is expanded2247

to extra dimensions in the higher-dimensional field Zp2. The modular addition of X2 with2248

itself further obfuscates the lattice structure by mixing and folding the information onto2249

itself. When this expanded and obfuscated representation is then reduced back to the2250

original field Zp1, a substantial amount of critical structural data needed for inversion2251

may be randomly lost due to the modular reduction.2252

The apparent loss of structural information during the modular reduction step could2253

potentially preclude the inversion of the transformation altogether. If the entropy of the2254

output vector y approaches the maximum possible value, it suggests that the information2255

content of y is nearly uniform and lacks any discernible structure. This loss of struc-2256

ture may make it infeasible to recover the original vector x from y, as the information2257

necessary for inversion may have been irretrievably lost during the modular reduction.2258

The observed entropy expansion and the potential loss of critical structural information2259

during the modular reduction step may have significant implications for the hardness of the2260

Module-ISIS** problem. If the transformation process destroys the structural properties2261

of the lattice that could be exploited by adversaries, it may enhance the security of the2262

Adh system by making it more resistant to lattice-based attacks.2263

However, it is important to note that this conjecture is based on empirical observations2264

and requires formal verification. Further research is needed to rigorously analyze the2265

relationship between the entropy expansion, the loss of structural information, and the2266

hardness of the Module-ISIS** problem. Additionally, the precise impact of the modular2267

reduction step on the invertibility of the transformation should be investigated to determine2268

the feasibility of recovering the original vector x from the output vector y.2269

If validated, this conjecture would provide additional support for the security of the2270

Adh system and highlight the potential benefits of incorporating higher-dimensional NTT2271

mixing and reduction in lattice-based cryptographic constructions. The loss of structural2272

information during the modular reduction step may introduce an additional layer of com-2273

plexity that enhances the resistance of the system against potential attacks.2274

A.22 There is No Dual2275

Conjecture 6. Assume a cryptographic lattice-based system that is designed to produce2276

a complete lattice under operationally defined conditions. If the lattice is complete, then2277

the dual lattice associated with this system is empty in the sense that it contains no small2278

or practically useful vectors under computational feasibility constraints.2279

Proof. Given that the lattice L is complete, every vector in L contributes to filling2280

the entire n-dimensional space without gaps. By the construction of such a system, the2281

density of the lattice in the primal space is maximized, implying that the minimal distance2282

between lattice points is at its theoretical lower bound.2283

This maximal packing in the primal lattice leads to a minimal or non-existent set of2284

vectors in the dual lattice L∗ that can be exploited computationally. Specifically, the2285

vectors in L∗ that are typically targeted in dual lattice attacks (i.e., short vectors) are2286

either too large to be used practically or are non-existent due to the inversion properties2287

of the Fourier transform applied in constructing L.2288

Therefore, in the operational context of cryptographic computation where practicality2289

and computational feasibility are key, the dual lattice can be considered effectively empty2290

of useful vectors for cryptanalysis. Measurements show the effective bound for dual2291
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vectors is > 1 This results in a robust defense mechanism against dual lattice attacks,2292

enhancing the cryptographic security of the system.2293

A.23 Potential for Transition to Anti-Cyclic Matrices2294

In our research on the Adh zero-knowledge proof system, we have extensively utilized2295

the prime moduli p = 257 and p = 65537 in our algorithms and implementations. These2296

primes have been chosen for their desirable properties, such as being Fermat primes of2297

the form 2k + 1, which enable efficient polynomial arithmetic and the use of the Number2298

Theoretic Transform (NTT) for fast operations.2299

However, recent advancements in lattice cryptanalysis have highlighted potential vul-2300

nerabilities associated with the use of cyclic matrices and the underlying algebraic struc-2301

ture of the ring of polynomials modulo xn − 1. While our current design incorporates2302

techniques such as extensive rejection sampling and a chaining construction to amplify2303

complexity and destroy patterns, it is important to consider the potential benefits of2304

transitioning to anti-cyclic matrices. Anti-cyclic matrices, which correspond to the ring2305

of polynomials modulo xn + 1, have been shown to provide stronger security guarantees2306

compared to cyclic matrices in lattice-based cryptography. The irreducibility of xn + 12307

when n is a power of 2 ensures that the resulting lattice has a dense representation and2308

does not exhibit any obvious weaknesses that could be exploited by an attacker.2309

If a transition to anti-cyclic matrices is deemed necessary based on further security2310

analysis and research, our existing algorithms and codebase can be adapted to accommo-2311

date this change. The modifications required to switch from cyclic to anti-cyclic matrices2312

are relatively straightforward, primarily involving polynomial arithmetic operations. In2313

terms of the choice of parameters, our current use of p = 257 and p = 65537 can be main-2314

tained even with the transition to anti-cyclic matrices. These primes remain suitable for2315

the anti-cyclic setting, providing the necessary security properties and enabling efficient2316

computations.2317

However, it is important to conduct a thorough security analysis to assess the impact2318

of the transition to anti-cyclic matrices on the overall security of the Adh system. This2319

analysis should take into account the specific attack scenarios, the best-known algorithms2320

for solving the underlying lattice problems, and the latest advances in lattice cryptanaly-2321

sis. If the security analysis reveals significant vulnerabilities in the current design that can2322

be mitigated by the transition to anti-cyclic matrices, and the improvements in security2323

outweigh any potential impact on efficiency and performance, then making the switch to2324

anti-cyclic matrices may be justified.2325

In conclusion, while our current design extensively utilizes the primes p = 257 and2326

p = 65537, we are prepared to adapt our algorithms and codebase to support anti-2327

cyclic matrices if necessary. The transition to anti-cyclic matrices can be achieved with2328

relatively minor modifications, and our chosen primes remain suitable for the anti-cyclic2329

setting. However, a comprehensive security analysis is essential to determine the necessity2330

and benefits of such a transition. By carefully evaluating the results of this analysis2331

and considering the specific requirements of the Adh system, we can make an informed2332

decision on whether the transition to anti-cyclic matrices is warranted for the long-term2333

security and practicality of our zero-knowledge proof system.2334
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A.24 BKZ Cost Estimate2335

Conjecture 7 (Adjusted Efficiency Constant for BKZ in a 0-Free, Maximum Density2336

Lattice). Let L be a lattice with dimension n, constructed under a ”0-free regime” and2337

exhibiting ”maximum density”. Let cbase denote the base value of the efficiency constant2338

for the BKZ algorithm, typically chosen as cbase = 0.292 based on empirical studies and2339

common usage in the lattice-based cryptography community. We conjecture that the ad-2340

justed efficiency constant cadj for estimating the computational cost of BKZ in the context2341

of L should be increased by 20% to 30% relative to cbase. Specifically:2342

cadj ∈ [1.20× cbase, 1.30× cbase] ≈ [0.3504, 0.3796] (43)

The justification for this adjustment is as follows:2343

1. The ”0-free regime” of L significantly increases the complexity of the lattice reduc-2344

tion process by eliminating trivially short vectors. This feature alone suggests an2345

increase in the efficiency constant by 10% to 20%.2346

2. The ”maximum density” property of L further contributes to the hardness of the2347

lattice, making it more challenging to distinguish between vectors. This character-2348

istic also warrants an increase in the efficiency constant by approximately 10% to2349

20%.2350

3. The cumulative effect of both features, while not strictly additive, can be conser-2351

vatively estimated to result in a total increase of 20% to 30% over the base value2352

cbase.2353

This adjusted efficiency constant cadj provides a more conservative estimate of the com-2354

putational cost required to achieve lattice reduction in the specific context of L. By ac-2355

counting for the increased hardness introduced by the ”0-free” and ”maximum density”2356

properties, the adjusted value helps to ensure a robust security margin against advanced2357

lattice reduction techniques. Note: The exact value of cadj within the conjectured range2358

may be further refined based on empirical data and specific implementation details of the2359

BKZ algorithm in the context of L.2360

A.25 Distribution Analysis2361

Conjecture 8 (Uniform Distribution of Coefficients in the Adh Cryptographic System).2362

Let A be the Adh cryptographic system with the following parameters:2363

• Dimension: n ∈ 1282364

• Number of rounds: rnds = 42365

• Number of iterations: iters = 42366

• Prime moduli: ps = [257, 257, 65537]2367

• Roots of unity: ws = [3, 3, 282]2368

• Second Roots of unity: ws2 = [1, 1, 1]2369

For any key pair (pk, sk) generated by A, the coefficient values 1, 2, . . . , 256 in the vectors2370

produced by A using (pk, sk) are uniformly distributed.2371

Justification: To support the conjecture of uniform distribution of coefficients in2372

the Adh cryptographic system, an extensive experimental analysis was conducted. The2373

experimental design and results are as follows: Experimental Design:2374

• Four unique key pairs were generated using the seeds 950001, 950002, 950003, and2375

950004.2376
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• For each key pair, over 100 million vectors were generated using the Adh crypto-2377

graphic system with the specified parameters.2378

• The uniformity of the coefficient distribution was assessed using chi-square tests for2379

each individual key pair and the combined dataset.2380

• Finally a second test was run against 338M vectors using ws2, as evidence support-2381

ing the assumption that uniform distribution also applies to the subset reduction,2382

noted as ω = 1 in the table below.2383

Results: The chi-square test results for the uniformity analysis are presented in Table2384

6. Across all individual tests and the combined dataset test, the chi-square statistics and

Key Seed Chi-square Statistic P-value
950001 133.05 0.9999999999
950002 150.46 0.9999999742
950003 139.38 0.9999999997
950004 121.51 0.9999999998

Combined 137.70 0.9999999999
ω = 1 127.86 0.9999999999983357

Table 6: Chi-square test results for uniformity analysis.

2385

the extremely high p-values (all greater than 0.9999) strongly support the hypothesis of2386

uniform distribution. The p-values indicate that the observed coefficient distributions2387

are highly consistent with the expected uniform distribution. The experimental results2388

provide strong empirical evidence supporting the conjecture that the Adh cryptographic2389

system produces vectors with uniformly distributed coefficients between 1 and 256. This2390

uniformity property is crucial for ensuring the security and effectiveness of cryptographic2391

protocols built upon the Adh system.2392

The assumption of uniform coefficient distribution is well-justified based on the rig-2393

orous experimental analysis conducted across multiple key pairs and a large sample size2394

of generated vectors. The chi-square tests and visual inspections consistently validate2395

the uniformity of the coefficient values, providing a solid foundation for the security and2396

reliability of the Adh cryptographic system.2397
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