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Abstract—State-of-the-art asynchronous Byzantine Fault Tol-
erance (BFT) protocols integrate a partially-synchronous opti-
mistic path. The holy grail in this paradigm is to match the
performance of a partially-synchronous protocol in favorable
situations and match the performance of a purely asynchronous
protocol in unfavorable situations. Several prior works have
made progress toward this goal by matching the efficiency of a
partially-synchronous protocol in favorable conditions. However,
their performance compared to purely asynchronous protocols is
reduced when network conditions are unfavorable. To address
these shortcomings, a recent work, Abraxas (CCS '23), presents
the first optimistic asynchronous BFT protocol that retains stable
throughput in all situations. However, Abraxas still incurs very
high worst-case latency in unfavorable situations because it is slow
at detecting the failure of its optimistic path. Another recent work,
ParBFT (CCS '23) guarantees good latency in all situations, but
suffers from reduced throughput in unfavorable situations due to
its use of extra Asynchronous Binary Agreement (ABA) instances.

To approach our holy grail, we propose Ipotane.
Ipotane achieves performance comparable to partially-
synchronous protocols in favorable situations, and attains
performance on par with purely asynchronous protocols in
unfavorable situations—in both throughput and latency. This is
accomplished by our newly introduced primitive Dual-functional
Byzantine Agreement (DBA), which packs the functions of
(biased) ABA and Validated Asynchronous Byzantine Agreement
(VABA). In the context of Ipotane, it promptly detects the
optimistic path’s failure and, at the same time, generates blocks
on the pessimistic path with little extra work. We conduct
extensive experiments to demonstrate that Ipotane achieves high
throughput and low latency in all situations.

I. INTRODUCTION

The explosive popularity of blockchain technology [47],
[7], [56] has reignited significant interest in Byzantine Fault
Tolerant (BFT) consensus over the past decade [53], [29], [52].
At its core, BFT consensus empowers distributed replicas to
reach an agreement on data, even in scenarios where a subset
of these replicas, termed Byzantine replicas, may deviate
arbitrarily from the protocol.

BFT consensus protocols traditionally fall into three
categories based on their underlying network assumptions:
asynchronous, partially-synchronous, and synchronous. Asyn-
chronous protocols [42], [19], [31] ensure safety and live-
ness under arbitrary network conditions, whereas (partially-
)synchronous protocols are prone to network attacks [42].
On the flip side, asynchronous protocols are known to be
inherently randomized [23], which makes them less efficient
and more challenging to design than their synchronous and

partially-synchronous counterparts (e.g., PBFT [14] and Hot-
Stuff [54] which can be fully deterministic).

A. Asynchronous protocols with an optimistic path

To harness the strengths of both (partially-)synchronous
and asynchronous protocols, a line of research has proposed
incorporating an optimistic path into an asynchronous pro-
tocol [26], [40], [16], [10]. This typically involves using a
partially-synchronous protocol, like two-chain HotStuff [34],
as the optimistic path, while an asynchronous protocol, often
Validated Asynchronous Byzantine Agreement (VABA), acts as
the pessimistic fall-back path.

This dual-path paradigm considers two situations: favorable
and unfavorable. A favorable situation is characterized by a
non-faulty leader on the optimistic path and good network
conditions, enabling the protocol to make progress through the
optimistic path. On the contrary, an unfavorable situation arises
when we have a faulty leader or poor network conditions, in
which case the protocol will fall back to the pessimistic path
to achieve liveness.

The holy grail in this dual-path paradigm is to match the
performance of a partially-synchronous protocol in favorable
situations and the performance of a purely asynchronous proto-
col in unfavorable ones. While existing protocols successfully
achieve the former, a significant gap remains in achieving the
latter. Specifically, earlier works like Ditto [26] and BDT [40]
follow a sequential-path design where the pessimistic path is
launched only after the optimistic path’s failure is detected.
This delay in launching the pessimistic path results in poor
efficiency in unfavorable situations. We give a more thorough
comparison with these and other existing works in Section VII.

To deal with the issues of sequential-path protocols, two
recent works ParBFT [16]1 and Abraxas [10] follow a parallel-
path design which operates the two paths simultaneously.
By continuously running the pessimistic path in the back-
ground, they avoid much of the overhead encountered by the
sequential-path design during unfavorable situations.

In spite of these improvements, ParBFT and Abraxas still
fall short of fully matching the performance of asynchronous
protocols under unfavorable situations. Concretely, ParBFT
employs an individual Asynchronous Binary Agreement (ABA)
instance at each height to detect the potential failure of the

1In [16], two versions of ParBFT are proposed. Our focus is on the first
one, ParBFT1. Throughout this paper, we will refer to ParBFT1 simply as
ParBFT, provided there is no ambiguity.



optimistic path. This achieves low latency in unfavorable
situations but introduces an idle period where no new block
is generated, resulting in reduced throughput (i.e., number of
committed blocks) compared to a purely asynchronous proto-
col. On the other hand, Abraxas’s pessimistic path leverages
consecutive VABA instances to continuously generate blocks
even during optimistic periods. Since there is no idle time,
Abraxas achieves essentially the same throughput as state-of-
the-art asynchronous protocols. The downside, however, is that
blocks from the pessimistic path can be committed only after
a special indicator transaction on the pessimistic path confirms
the failure of the optimistic path. This indicator transaction is
submitted only after a certain number of blocks (empirically,
20) have been generated on the pessimistic path. Thus, though
Abraxas achieves high throughput on average, it might incur
very high latency in the worst case.

Therefore, we pose the following natural question: Is there
an asynchronous protocol whose throughput and latency are on
par with the state-of-the-art of: 1) partially-synchronous pro-
tocols under favorable situations, and 2) purely asynchronous
protocols in unfavorable situations?

B. Our solution

We answer this question affirmatively by proposing
Ipotane. Ipotane integrates the advantages of Abraxas and
ParBFT. More precisely, Ipotane delivers performance akin to
that of partially-synchronous protocols under favorable situa-
tions; in unfavorable situations, Ipotane still offers throughput
and latency comparable to those of a purely asynchronous
protocol. In addition, in situations that fall between favorable
and unfavorable, Ipotane consistently exhibits nearly the best
throughput and latency among existing protocols.

Ipotane achieves these merits by utilizing a new primitive
introduced in this paper: Dual-functional Byzantine Agreement
(DBA). At its core, DBA combines the functionalities of
(biased) ABA and VABA. In addition to the validated block,
as required by standard VABA, the input for a DBA instance
also includes a binary value. At the end of the protocol,
DBA outputs pair, comprising a binary value and a block value,
ensuring agreement on the pair, biased validity for the binary
value, and external validity for the block value. DBA can
be constructed by incorporating a prepare phase prior to any
existing VABA protocol. This prepare phase, completed in a
single communication round, biases the binary input towards
0 by amplifying this value, ensuring the safety of committing
a block on the optimistic path. It is important to note that
although DBA may seem somewhat similar to Cachin et al.’s
VABA [13], they actually differ significantly, which will be
discussed in Section III-B3. With the addition of merely one
communication round, DBA manages to deliver performance
similar to VABA.

With the DBA primitive defined, Ipotane operates the
optimistic and pessimistic paths in parallel much like Abraxas
and ParBFT. It employs the two-chain HotStuff protocol for
the optimistic path and the DBA protocol for the pessimistic
path. The binary decision from DBA indicates the success
or failure of the optimistic path. Upon detecting a failure
in the optimistic path, Ipotane promptly commits blocks on
the pessimistic path, thus promising low latency. Moreover,

0 5 10 20 100
Leader failure (%)

0

25

50

75

100

125

Th
ro
ug
hp
ut
 (K

 tx
/s
)

Abraxas
ParBFT

Ipotane
Two-chain VABA

Ditto

(a) Throughput under varying failure probability.

0 5 10 20 100
Leader failure (%)

0

2

4

6

8

La
te

nc
y 

(s
)

Abraxas
ParBFT

Ipotane
Two-chain VABA

Ditto

(b) Latency under varying failure probability.

Fig. 1: Performance under varying probabilities (ρ) of leader
failure. ρ = 0 represents a favorable situation, where the opti-
mistic path always operates smoothly. Conversely, ρ = 100%
represents an unfavorable situation, where the optimistic path
fails to make any progress.

DBA instances are comparable in efficiency to VABA, thus
achieving good throughput.

Experimental results to evaluate Ipotane’s performance
have been shown in Fig. 1, where the x-axis represents the
probability (ρ) of leader failure on the optimistic path. It shows
that under favorable situations (ρ = 0), Ipotane achieves high
throughput and low latency, matching Ditto, which operates as
a purely partially-synchronous protocol in such situations. On
the other hand, when leaders are always faulty (ρ = 100%),
Ipotane demonstrates throughput and latency on par with two-
chain VABA, a purely asynchronous protocol. Furthermore, as
the probability of leader failure varies, Ipotane consistently
achieves almost the highest throughput and lowest latency
compared to other protocols.

Table I presents a more detailed and comprehensive com-
parison between Ipotane and existing protocols, corroborating
Ipotane’s good performance with theoretical analysis. δ de-
notes the actual network delay, and c represents the maximum
transaction count within a block. Ipotane demonstrates a low
latency of 5δ and a high throughput of c/(2δ) in favor-
able situations. This matches the performance of a partially-
synchronous protocol (specifically, two-chain HotStuff). On
the other hand, in unfavorable situations, Ipotane manages to
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TABLE I: Consensus performance comparison. δ and ∆ denote the actual network delay and timer parameter, respectively. c and
L represent the maximum transaction count and block size of a block. κ denotes the computational security parameter, while
λ is the lookback parameter (empirically, 20) in Abraxas. Performance under unfavorable situations is measured assuming the
adversary mounts arbitrary attacks.

Favorable situations Unfavorable situations

Latency Throughput Communication Latency Throughput Communication

Two-chain HotStuff [26] 5δ c/(2δ) O(nL + nκ) / / /

Two-chain VABA [26] 10.5δ 2c/(7δ) O(n2L + n2κ) 10.5δ c/(7δ) O(n2L + n2κ)

Ditto [26] 5δ c/(2δ) O(nL + nκ) 3∆ + 10.5δ c/(2∆ + 7δ) O(n2L + n2κ)

Abraxas [10] 5δ c/(2δ) O(n2L + n2κ) 3.5λδ + 14δ c/(7δ) O(n2L + n2κ)

ParBFT [16] 5δ c/(2δ) O(n2L + n2κ) 22δ c/(22δ) O(n2L + n2κ)

Ipotane 5δ c/(2δ) O(n2L + n2κ) 18.5δ 3c/(23δ) O(n2L + n2κ)

‡ As a common implementation practice, transactions are constantly packaged and broadcast through an underlying mempool [26]. A consensus block only contains hashes
of some transaction packages. Therefore, L is typically very small, approximately κ, and should not negatively impact the performance much [10].

maintain a latency of 18.5δ and a throughput of 3c/(23δ).
These are just slightly worse than a purely asynchronous
protocol (specifically, two-chain VABA) but significantly better
than prior works Abraxas in terms of latency and ParBFT in
terms of throughput.

II. MODELS AND PRELIMINARIES

A. Model

The system consists of n replicas, with a maximum of t
being Byzantine where n ≥ 3t+1. Each replica is identified by
a unique number and is denoted as pi (1 ≤ i ≤ n). Byzantine
replicas may deviate from the protocol arbitrarily and are
presumed to be under the control of an adaptive adversary.
This adaptive adversary can corrupt replicas as the protocol
progresses and drop a corrupted replica’s messages from the
network a posteriori.The remaining replicas, termed non-faulty,
faithfully adhere to the protocol. Each pair of replicas is
connected through a pairwise authenticated communication
channel. The system operates in an asynchronous network
environment where no assumption is made about network
delays. The adversary is assumed to have full control over the
network and can arbitrarily delay and reorder any messages as
long as it eventually delivers them.

A Public Key Infrastructure (PKI) is established across the
replicas and digital signatures are used to ensure the authentic-
ity and integrity of transmitted messages. Additionally, we em-
ploy two distinct instances of threshold signature schemes [38],
[6]: one with a threshold of n−t, and the other with a threshold
of t + 1. The algorithm for generating a threshold signature
share is denoted as SignShr, while Comb constructs a threshold
signature from sufficient shares. To simplify our notation, we
omit the use of private or public keys as parameters in SignShr
or Comb. To differentiate between the two threshold signature
schemes, we use SignShrr and Combr to denote calls to these
algorithms with the threshold parameter r. We assume the
adversary is computationally bounded and cannot break the
security of (threshold) signatures.

B. State Machine Replication

We focus on the State Machine Replication (SMR) prob-
lem. Each replica pi in SMR locally maintains a growing
chain, denoted as Ci, which is modeled as a write-once array.
An object in the array is named a block, which consists of

multiple transactions. Transactions are continuously generated
by clients or upper-layer applications, and are inserted into a
buffer of each replica i, denoted as bufi. Transactions cached
in the buffer are sorted based on the times they are received
by the replica. When a replica pi proposes a block, it selects
a number of transactions from its buffer bufi. Without loss of
generality, we assume the maximum number of transactions
that can be included in a block is c. Therefore, the block
proposed by pi consists of the first c transactions from the
buffer, denoted bufi[: c].

Ci is initialized as empty, namely Ci[k] = ⊥ for each index
k (k ≥ 1). A block B is said to be committed by pi when it is
written to the chain Ci. All transactions in B are then deleted
from pi’s buffer bufi. At a high level, the SMR protocol serves
to maintain a consistent chain among non-faulty replicas. We
adopt the definition in Blum et al. [9], [10]:

Definition 1. Let Π be a protocol executed among replicas
p1, ..., pn, where each non-faulty replica holds a transaction
buffer bufi. We say that Π implements SMR if it satisfies the
following properties:

• Completeness: For each index k (k ≥ 1) and each non-
faulty replica pi, eventually either bufi remains forever
empty or Ci[k] ̸= ⊥.

• Consistency: For two non-faulty replicas pi and pj , if
Ci[k] ̸= ⊥ and Cj [k] ̸= ⊥, then Ci[k] = Cj [k].

• Liveness: If a transaction tx is added to every non-
faulty replica’s buffer, then every non-faulty replica will
eventually commit a block containing tx.

If Π can achieve the above properties of completeness,
consistency, and liveness in the presence of t Byzantine
replicas, Π is named a t-BFT SMR protocol.

C. (Biased) Asynchronous Binary Agreement

The Asynchronous Binary Agreement (ABA) abstrac-
tion [8], [24] represents the most basic form of asynchronous
BFT consensus, which serves to agree on a binary value. To
be more specific, an ABA protocol is defined as follows:

Definition 2. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds a binary input bi and
generates an output. We say that Π achieves ABA if it satisfies
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the following properties in an asynchronous network whenever
at most t replicas are corrupt:

• Agreement: If two non-faulty replicas output values b and
b′, then b = b′.

• Termination: All non-faulty replicas eventually output.

• Validity: If all non-faulty replicas input the same bit b,
then each non-faulty replica outputs b.

As mentioned by Cachin et al. [13], the ABA protocol can
be adapted to exhibit a bias towards 0 by adding a ‘biased
validity’ property, which is defined as follows:

• Biased validity: If at least t+1 non-faulty replicas input
the bit 0, all non-faulty replicas will output 0.

An ABA protocol achieving the biased validity property is
termed a biased ABA. Our design does not utilize a biased
ABA directly. Instead, we introduce a new abstraction named
DBA that incorporates properties akin to those in biased ABA,
which is detailed in Section III.

D. Validated Asynchronous Byzantine Agreement

Different from ABA, the Validated Asynchronous Byzan-
tine Agreement (VABA) abstraction facilitates consensus on
arbitrary values [13]. VABA introduces an external validation
predicate Q, typically defined by the higher-layer applications.
To be more specific, VABA is defined as follows.

Definition 3. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds input vi and replicas termi-
nate upon generating output. We say that Π achieves VABA if
it satisfies the following properties in an asynchronous network
whenever at most t replicas are corrupt:

• Agreement: If two non-faulty replicas output values v and
v′, then v = v′.

• Termination: All non-faulty replicas eventually output.

• External validity: If a non-faulty replica outputs v, then
Q(v) must be True.

• Quality: If a non-faulty replica outputs v, then with prob-
ability over 1/2, v is input by some non-faulty replica.

Various implementations of the VABA abstraction [13], [2],
[41], [31] have been developed over the past decades. Note that
while the quality property is not explicitly defined in [13], [31],
both works implicitly guarantee this property. In our approach,
we can employ any existing VABA protocol with an added
validation predicate R. Specifics of this additional predicate R
will be discussed in Section III-B1.

III. BUILDING BLOCK: DBA

A. Definition of DBA

We propose a new abstraction called Dual-functional
Byzantine Agreement (DBA), which serves as a fundamental
building block in Ipotane. At its core, DBA combines the
functionalities of biased ABA and VABA. Through a DBA in-
stance, replicas can simultaneously achieve consensus on a
binary value as well as an arbitrary value. In the context of

this paper, the arbitrary value is typically a block. Therefore,
within the remainder of this paper, we will use the term
“block” to represent the arbitrary value in DBA. The input
to DBA consists of a triplet, ⟨b, σ,B⟩, where b is a binary
value and B represents a block. If b equals 0, then σ is a
proof that b satisfies an external predicate P . Conversely, if b
is 1, σ defaults to ⊥. The protocol’s output is a pair ⟨b, B⟩.
The “bias” is reflected in a preference to 0 in the binary value:
as long as t+ 1 non-faulty replicas input 0, DBA will output
0. Formally, a DBA protocol is defined as follows:

Definition 4. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds a binary value bi, a proof
σ, plus a block Bi as input, and generates a binary value b
and a block B as output. Replicas terminate upon generating
output. We say that Π achieves DBA if it satisfies the following
properties whenever at most t replicas are corrupt:

• Agreement: For any two non-faulty replicas outputting
⟨b, B⟩ and ⟨b′, B′⟩, it must hold that b = b′ and B = B′.

• Termination: All non-faulty replicas eventually output.

• External validity: For any output ⟨∗, B⟩ from a non-faulty
replica, Q(B) = True.

• Quality: If a non-faulty replica outputs ⟨∗, B⟩, then with
probability over 1/2, B is input by some non-faulty
replica.

• Biased validity. If at least t+1 non-faulty replicas input
⟨0, ∗⟩, then all non-faulty replicas will output ⟨0, ∗⟩.
• Proof validity: If a non-faulty replica outputs ⟨0, ∗⟩, at

least one replica (Byzantine or non-faulty) must have
inputted ⟨0, σ, ∗⟩ with P (σ) = True.

To aid presentation, in the context of DBA’s input, b plus
σ is referred to as the “binary input”, while B is termed
the “block input”. Correspondingly, in the output ⟨b, B⟩, we
refer to b and B as the “binary output” and “block output”,
respectively. It is important to note that the properties of biased
validity and proof validity specifically pertain to DBA’s binary
values, while quality and external validity are applicable to
the block values. Besides, DBA discards the validity property
defined in the original (biased) ABA abstraction. This implies
that even if all non-faulty replicas input a binary value of 1
but some faulty replica inputs 0, DBA can output 0.

B. Construction of DBA: AlgDBA

Since the combination of binary input and block input can
be regarded as a single value, an initial approach to developing
the DBA protocol might involve adapting an existing VABA
protocol to accept the combined inputs as a singular value.
This approach could fulfill most of the properties outlined in
Definition 4, but it falls short of meeting the biased validity
requirement. To solve this problem, we introduce a prepare
phase prior to executing the VABA protocol.

At a high level, our construction of the DBA protocol
involves two steps. Firstly, we propose a variant of VABA,
termed VABA*, which extends any existing VABA protocol
with minor modifications. Subsequently, by adding a prepare
phase to VABA*, we end up with a construction of DBA,
named AlgDBA.
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Algorithm 1: AlgDBAh: A construction of DBA with
the instance identity h (for replica pi)
1 Let ⟨bi, σi, Bi⟩ denote the input of pi.

2 if bi = 0 then
3 broadcast (PREP, h, 0, σi,SignShrt+1(h, 0));
4 else
5 broadcast (PREP, h, 1, σi,SignShrn−t(h, 1));

6 on receiving (PREP, h, 0, σj , ∗) from pj:
// amplify the bit of 0

7 if pi has not broadcast 0 then
8 broadcast (PREP, h, 0, σj ,SignShrt+1(h, 0));
9 on receiving t+ 1 (PREP, h, 0, σj , ∗):

10 S ← all the signature shares from t+ 1 messages;
11 sig0 ← Combt+1(h, 0, S);
12 input ⟨0, sig0, Bi⟩ to VABA∗

h if it has not done;
13 on receiving n− t (PREP, h, 1, ∗, ∗):
14 S ← all the signature shares from n− t messages;
15 sig1 ← Combn−t(h, 1, S);
16 input ⟨1, sig1, Bi⟩ to VABA∗

h if it has not done;

17 on outputting ⟨b, sig, B⟩ from VABA∗
h:

18 output ⟨b, B⟩;

1) VABA*: This modified version of VABA introduces a
triplet as the input and output, denoted as ⟨b, sig, B⟩. Here, b
is a bit, sig is a threshold signature on b, and B is a block.
Let Q denote the original validation predicate in VABA. For
VABA*, we introduce a new global validation predicate R,
which takes ⟨b, sig⟩ as input and returns a Boolean value
indicating validation success. When b = 0, R yields True
if sig is a valid (t + 1)-threshold signature on 0 and False
otherwise. Conversely, for b = 1, R returns True if sig is a
valid (n− t)-threshold signature on 1, and False otherwise.

In VABA*, upon receiving a message containing
⟨b, sig, B⟩, the replica uses R to validate ⟨b, sig⟩ and Q to
validate B. The message is deemed valid only if both R
and Q return True. Once the message is validated, the triplet
⟨b, sig, B⟩ is regarded as a whole, and is input to VABA.
Ultimately, a triplet that satisfies both R and Q is output by
VABA, which is also the output of VABA*.

2) AlgDBA protocol: This protocol, given in Algorithm 1,
adds a prepare phase to amplify the bit of 0, prior to executing
VABA*. In this phase, each replica broadcasts its binary input
accompanied by a threshold signature share, through a PREP
message. If the binary input is 0, the threshold parameter for
the signature share is set to t+1. Conversely, for a binary input
of 1, the threshold is set to n−t (see Lines 2-5 in Algorithm 1).
If a replica receives a valid PREP message containing 0, it will
also broadcast 0 if it has not yet done so (Lines 6-8), which
amplifies the broadcast of 0.

At the end of this phase, if a replica gathers t + 1
PREP messages containing 0, it creates a complete threshold
signature sig0 based on signature shares in these messages,
certifying the bit 0. The replica then uses ⟨0, sig0, B⟩ as input
to the VABA* instance, where B is the block input of AlgDBA
(Lines 9-12). Alternatively, if it receives n− t valid values of

1, it creates a complete threshold signature sig1 for the value
1, leading to the input ⟨1, sig1, B⟩ for the following VABA*
instance (Lines 13-16). Finally, VABA* outputs one of these
inputs, with the bit and block values forming the output of
AlgDBA (Lines 17-18).

3) Relation to Cachin et al. [13]: Cachin et al. [13] first
introduced VABA and biased ABA. While we draw inspiration
from their work, our work is also significantly different from
theirs. The end goal of Cachin et al. [13] is to construct
VABA, and they defined and used biased ABA in that process.
In contrast, our DBA is a new primitive that simultaneously
achieves agreement on a binary value and a block value. To
obtain DBA, we modify existing VABA protocols and use them
as building blocks.

C. Correctness analysis of AlgDBA

In this section, we prove our AlgDBA construction adheres
to all the properties outlined in Section III-A. First, we
establish that VABA* inherits all properties from VABA. This
is because VABA* only adds an additional validation for the
binary value of the input. If the input originates from a non-
faulty replica, this extra validation will definitely return True,
making VABA* functionally identical to VABA.

1) Agreement, quality, and external validity: These three
properties of AlgDBA are derived directly from the properties
of VABA*.

2) Termination: AlgDBA’s termination property is stated in
Theorem 2, supported by Lemma 1. Due to space limitations,
Lemma 1’s proof is provided in Appendix Section A.

LEMMA 1. Every non-faulty replica will receive either t+1
values of 0 or n− t values of 1 during the prepare phase.

THEOREM 2. AlgDBA fulfills DBA’s termination property.

Proof: Based on Lemma 1, every non-faulty replica can
generate a valid input for VABA*. Following the termination
property of VABA*, all non-faulty replicas will eventually
produce an output from VABA* and thus from AlgDBA,
affirming the termination property.

3) Proof validity: The proof is established by contradiction.
Suppose a non-faulty replica outputs ⟨0, ∗⟩, but no replica
inputs 0 with a valid proof σ. In such a case, no one can receive
t+1 messages of (PREP, 0, ∗) to create a valid signature sig0
or form a valid input of 0 to VABA*, as described in Lines 9-12
in Algorithm 1. Consequently, the binary output from VABA*
or AlgDBA cannot be 0, contradicting the initial assumption.

4) Biased validity: If at least t+1 non-faulty replicas input
⟨0, ∗⟩, it implies that at most n− t− 1 replicas, whether non-
faulty or Byzantine, will input ⟨1, ∗⟩. Hence, the condition
in Line 13 of Algorithm 1 will not be met. Even a Byzantine
replica cannot forge a valid threshold signature on 1. Therefore,
every replica, whether non-faulty or Byzantine, can only input
a tuple containing the bit 0 to VABA*. This ensures that the
output from VABA* and AlgDBA will contain the bit 0, thus
guaranteeing biased validity.
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Fig. 2: The structure of an epoch in Ipotane.

(a) Commit Bh through the two-chain mechanism.

(b) DBAh+1 outputs 0 indicating the readiness to commit Bh.

(c) DBAh+1 outputs 1 indicating the readiness to commit Ch.

(d) Commit both Ch and Ch+1 when DBAh+1 outputs 1.

Fig. 3: Examples to show the block committing rules. We omit
some elements in the figures for conciseness.

IV. IPOTANE DESIGN

A. Overview and intuition

Ipotane operates in epochs, designated by incrementing
integer identifiers starting from 1. Each epoch comprises an
optimistic path and a pessimistic path in parallel, as depicted in
Fig. 2. The optimistic path employs a structure of chain-based
blocks, where the Quorum Certificate (QC) for a block is
encapsulated within the next block. The pessimistic path is im-
plemented through consecutive DBA instances, each producing
a block and a binary value. Blocks generated in the two paths
are referred to as “opt-blocks” and “pess-blocks”, respectively.
Opt-blocks within an epoch are numbered with heights starting
from 1, denoted as Bh. Similar to a partially-synchronous pro-
tocol, a leader is designated for each height on the optimistic
path, following a round-robin manner. DBA instances and their
outputted pess-blocks in an epoch are also numbered starting
from 1, denoted as DBAh and Ch, respectively.

1) Design intuition: In the context of Ipotane, we make a
clear distinction between the terms “certify” and “commit”
in relation to a block. An opt-block is deemed “certified”
when the corresponding QC is obtained, and a pess-block is
considered “certified” if it is outputted from a DBA instance.
Taking Fig. 2 as an example, the opt-block Bh is certified,
since the QC for it is contained in Bh+1. Both the pess-
blocks Ch and Ch+1 are certified, as they are outputted
from DBAh and DBAh+1, respectively. Due to the quorum
intersection argument, the opt-block at a given height will be
unique. Additionally, according to the consistency property of
DBA, the pess-block at a given height will also be unique.
Conversely, “commit” denotes that a block, either an opt-block
or a pess-block, is eligible to be written to the SMR chain C.

Within this parallel-path structure, it is possible to have
two certified blocks at the same height, h: an opt-block Bh

and a pess-block Ch. A primary task is to decide which block
to commit. This is precisely the reason why we augmented
VABA to DBA to make a binary decision. In particular, we will
leverage the binary output from the DBA instance at the next
height, namely DBAh+1, to commit the block at height h. On
the other hand, to attain performance comparable to a partially-
synchronous protocol under favorable situations, Ipotane must
be capable of rapidly committing blocks through the optimistic
path, particularly employing the two-chain mechanism akin to
two-chain HotStuff [26]. Thus, two distinct rules for block
committing co-exist: one using binary outputs on the pes-
simistic path, and the other using the two-chain mechanism
on the optimistic path.

The next challenge is to ensure consistency between these
two commit rules. Specifically, for a given height, if a replica
commits an opt-block using the two-chain mechanism, we
must ensure that another replica will also commit this opt-
block even if it follows the pessimistic path’s binary output.
This consistency is achieved through the biased-validity prop-
erty of DBA. In short, if a replica commits Bh via the two-
chain mechanism, then at least t+ 1 non-faulty replicas have
inputted 0 to DBAh+1, signaling their intention to commit Bh.
Due to the biased-validity property, DBAh+1 will output 0,
which indicates committing Bh.

2) Overall design: Each replica participates in both the op-
timistic and pessimistic paths. The optimistic path, resembling
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the two-chain HotStuff protocol, involves designated leaders
proposing opt-blocks, which are then voted by replicas using
threshold signature shares. The pessimistic path, on the other
hand, consists of consecutive DBA instances. The input for
a DBA instance (DBAh+1) depends on which block at the
preceding height h—either opt-block Bh or pess-block Ch—
gets certified first. An opt-block is certified by a QC contained
in the subsequent opt-block, whereas a pess-block is certified
upon being outputted from a DBA instance. Therefore, a
replica’s binary input for DBAh+1 hinges on which of these
two events occurs first: (1) receipt of Bh+1 or (2) output from
DBAh. If Bh+1 is received earlier, it inputs 0 to DBAh+1;
otherwise, it inputs 1.

Committing an opt-block or a pess-block is based on either
the two-chain mechanism or the output from the DBA instance.
As depicted in Fig. 3a, upon receiving an opt-block Bh+2,
a replica can immediately commit the opt-block from two
heights prior (Bh) via the two-chain mechanism. On the other
hand, if a replica receives 0 from DBAh+1, as illustrated in
Fig. 3b, it can commit the opt-block at the preceding height
(Bh). Otherwise (namely if DBAh+1 outputs 1), the replica
commits the pess-block at the preceding height (Ch), as
shown in Fig. 3c.

Additionally, the 1 output from DBAh+1 indicates a failure
in the optimistic path. In this scenario, each replica concludes
the current epoch and progresses to the next. To enhance
throughput, the pess-block Ch+1 generated from DBAh+1 is
also committed together with Ch. As demonstrated in Fig. 3d,
both Ch and Ch+1 are committed when DBAh+1 outputs 1.

In favorable situations, Ipotane continuously commits
blocks through the two-chain mechanism, achieving perfor-
mance akin to partially-synchronous protocols. In contrast,
under unfavorable situations, Ipotane remains capable of com-
mitting blocks using the pessimistic path, thereby ensuring
liveness. Since the DBA protocol can be effectively constructed
based on a VABA protocol with efficient modifications, the
DBA instance can offer performance comparable to VABA,
enabling Ipotane to match the performance of purely asyn-
chronous protocols in unfavorable situations.

B. Data structures and utilities

We describe data structures and utilities in this section,
which are summarized as Algorithm 2. An opt-block Bh

on the optimistic path is characterized by the data structure
{h,QC, d}, where h represents its height number, QC is a
certificate for the preceding block Bh−1, and d denotes a
transaction batch from the buffer buf.

On the pessimistic path, each replica can generate a trans-
action batch at a height h, serving as the block input to the
DBAh instance. From these block inputs, only one is outputted
from DBAh and is referred to as “certified”, denoted as Ch.
Consequently, a replica’s input I to the DBAh instance follows
the format {b, σ, C}, where b is a binary value indicating its
opinion on which block at height h − 1 is certified earlier,
and C denotes the block input. If b = 0, the replica believes
the opt-block Bh−1 is certified earlier, and σ is set to QC of
Bh−1. Otherwise (b = 1), the replica believes that the pess-
block Ch−1 is certified earlier, leaving σ = ⊥. The output from
DBAh is consistent across replicas, and has the format {b, C},

Algorithm 2: Data structures & utilities for pi
1 struct Opt-Block:
2 {h,QC, d}
3 struct DBAInput:
4 {b, σ, C}
5 struct DBAOutput:
6 {b, C}

7 define GenOptBlk(h,QC):
8 d← GenTxBatch();
9 B.h← h; B.QC ← QC; B.d← d;

10 return B;
11 define InvokeDBA(h, b, σ):
12 d← GenTxBatch();
13 I.b← b; I.σ ← σ; I.C ← d;
14 invoke DBAh with I;
15 define GenTxBatch():
16 d← a batch of transactions from bufi;
17 return d;
18 define CommitBlk(blk):
19 len← Ci.len();
20 Ci[len+ 1]← blk;
21 delete tx from bufi for each tx ∈ blk;

where b is a bit indicating the agreed-upon result regarding
which block at height h − 1 is certified earlier. C is a block
output derived from one of the block inputs. For convenience,
we omit the height numbers in data structures of DBA inputs
and outputs. Instead, their heights are implied by the height
numbers of DBA instances. For example, “invoking DBAh

with I” implies I has a height number h, and “DBAh outputs
O” implies O has a height number h.

We also define some functions that are utilized in Ipotane,
including GenOptBlk, InvokeDBA, and CommitBlk. Both
GenOptBlk and InvokeDBA need to extract a batch of
transactions from the replica’s transaction buffer buf, which
is achieved by calling the GenTxBatch function.

C. Detailed design when h > 1

Algorithm 3 outlines an epoch in Ipotane, which operates
in consecutive heights2. This subsection describes the general
protocol for heights greater than 1, while special considerations
for the first height will be discussed in the next subsection.

The external validity function P in DBA is defined as a
(n − t)-threshold signature verification function. The binary
input or output in the DBA instance is 0 if the corresponding
opt-block is certified earlier than the pess-block, and is 1
otherwise. In other words, a replica inputs 0 if it believes the
optimistic path is functioning well and inputs 1 if it perceives
lack of progress with the optimistic path. An output of 0 from
a DBA instance indicates agreement among replicas that the
optimistic path performs well, while an output of 1 indicates
agreement that the optimistic path has encountered a failure.

2We put termination and invocation of DBA (Lines 19-20 of Algorithm 3)
as part of the optimistic path, as these actions are triggered by receiving an
opt-block. Similarly, we put committing an opt-block (Lines 26-28) as part of
the pessimistic path, as these actions are triggered by receiving a pess-block.
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Algorithm 3: Protocol of an epoch in Ipotane for pi
1 Let Lh denote the leader of height h on the opt. path.
2 h← 1, prevPessBlk ← ⊥.

// optimistic path
3 if pi is L1 then
4 B1 ← GenOptBlk(1,⊥);
5 broadcast B1;

// pessimistic path
6 InvokeDBA(1, 0,⊥);

// optimistic path
7 on receiving B1:
8 send SignShrn−t(B1) to L2;
9 on receiving n-t sign. shares on Bk (denoted as S):

10 if pi is Lk+1 then
11 QC ← Combn−t(Bk, S);
12 Bk+1 ← GenOptBlk(k + 1, QC);
13 broadcast Bk+1;

14 while the epoch is not concluded:
15 wait until Bh+1 is received or DBAh outputs O;
16 if Bh+1 is received earlier then

// optimistic path
17 CommitBlk(Bh−1) if h ≥ 2;
18 send SignShrn−t(Bh+1) to Lh+2;
19 stop participating in DBAh−1 if h ≥ 2;
20 InvokeDBA(h+ 1, 0, Bh+1.QC);
21 broadcast Bh+1 if it has not done yet;
22 else

// pessimistic path
23 if O.b = 0 then
24 stop participating in the optimistic path;
25 InvokeDBA(h+ 1, 1,⊥);
26 if h ≥ 2 and Bh−1 is not committed then
27 wait until Bh−1 is received;
28 CommitBlk(Bh−1);
29 prevPessBlk ← O.C;
30 else
31 CommitBlk(prevPessBlk);
32 CommitBlk(O.C);
33 conclude the epoch;
34 h← h+ 1;

For a height, consider two time points for replica pi:

• t1: the time when the opt-block Bh is certified, indicated
by receiving an opt-block Bh+1

• t2: the time when the pess-block Ch is certified, indicated
by receiving the output from the DBAh instance.

If the optimistic path operates effectively, the DBA instance
at height h, namely DBAh, will be launched upon the reception
of the opt-block Bh. Subsequently, it takes 2δ for Bh to be
certified by the QC contained in the subsequent opt-block
Bh+1, whereas a minimum of 7δ is required for DBAh to
output the certified pess-block Ch. Therefore, we should have
t1 < t2 when the optimistic path is functioning well. The
comparison between t1 and t2 hence serves as an indicator of

Fig. 4: Actions taken when t1 < t2 in Ipotane.

whether the optimistic path is working well. pi takes different
actions based on this comparison.

1) Case 1: t1 < t2: In this case, pi receives Bh+1 earlier
than the output from DBAh, indicating that the optimistic path
works well as expected. pi leverages the two-chain mechanism
to commit block Bh−1 (when h ≥ 2) and casts a vote for
the received block Bh+1, as described in Fig. 4 and Lines
17-18 in Algorithm 3. Additionally, pi stops participating in
the DBAh−1 (when h ≥ 2) instance (Line 19). Furthermore,
pi inputs to DBAh+1 its opinion that Bh is certified earlier
than Ch. To be concrete, its binary input to DBAh+1 is 0
plus QC of Bh contained in Bh+1 (Line 20). We denote QC
of Bh as QCh. This ensures the consistency of committed
blocks. Intuitively, if a non-faulty replica commits Bh after
receiving Bh+2, at least t + 1 non-faulty replicas must have
received Bh+1 earlier and inputted 0 to DBAh+1. Therefore,
the biased validity of DBA guarantees that DBAh+1 will output
0, directing any non-faulty replica to commit Bh if it has not
done so already. Besides, pi will also broadcast Bh+1 to make
sure other replicas receive this block (Line 21).

2) Case 2: t1 ≥ t2: In this case, DBAh outputs before
the reception of Bh+1. When DBAh outputs 0, it indicates an
agreement that the optimistic path has been functioning well
until height h−1. However, from this one replica’s perspective,
something is wrong with the optimistic path at height h. So
the replica conveys this opinion by inputting 1 to the next
DBA instance, namely DBAh+1, and stops participating in the
optimistic path. On the contrary, if the binary output from
DBAh is 1, signifying agreement among replicas that a failure
has occurred with the optimistic path, the replica concludes
the current epoch after committing pess-blocks. To delve into
more details, we consider two sub-cases.

Case 2.1: DBAh outputs 0. As illustrated in Fig. 5a and
detailed in Lines 22-24 of Algorithm 3, pi promptly stops
participating in the optimistic path of this epoch. Additionally,
it inputs 1 to the subsequent DBA instance expressing its
opinion that the optimistic path has failed (Line 25). It can also
commit the block at height h−1 (when h ≥ 2), namely Bh−1.
If it has not received Bh−1 yet, it will wait for the reception
of Bh−1 and then commit Bh−1. The pseudocode for this case
is described in Lines 26-28 in Algorithm 3. Furthermore, the
pess-block outputted from DBAh, namely Ch, will be cached
for now (Line 29) and will be committed later if the subsequent
DBA instance outputs 1.

Case 2.2: DBAh outputs 1. This sub-case indicates
agreement among replicas that the optimistic path has failed.
Consequently, every replica within this sub-case commits two
pess-blocks and then concludes the current epoch. Actions
taken by pi are presented in Fig. 5b and Lines 30-33 of
Algorithm 3. After consecutively committing the opt-blocks
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(a) DBAh outputs 0.

(b) DBAh outputs 1.

Fig. 5: Actions taken when t1 ≥ t2 in Ipotane.

until Bh−2, pi commits two pess-blocks, Ch−1 and Ch.
Notably, Ch−1 has been cached in the variable prevPessBlk,
and Ch is outputted from the current DBA, namely DBAh.
Subsequently, pi concludes its participation in the current
epoch and progresses to the next epoch.

D. Detailed design when h = 1

In the initial opt-block B1, QC for the preceding block
is set to an empty value ⊥ (Line 4 in Algorithm 3), fol-
lowing the approach in two-chain HotStuff [26]. The first
DBA instance, DBA1, is invoked with a binary input of 0
and QC set to the empty value ⊥, as outlined in Line 6 in
Algorithm 3. Any replica that receives a message in the form
of (PREP, 0,⊥,SignShrt+1(0)) during the DBA1 instance will
straightforwardly recognize this binary input of 0 as valid.

V. ANALYSIS OF IPOTANE

Our analysis of Ipotane covers two main aspects: correct-
ness and efficiency. The correctness analysis examines whether
Ipotane fulfills the three properties of SMR: completeness,
consistency, and liveness. Due to space constraints, detailed
proofs of helper lemmas are deferred to Appendix Section A.

A. Completeness analysis

To aid presentation, we denote an iteration of the loop
(Lines 15-33 in Algorithm 3) with the parameter h as iterh.
Theorem 6 addresses the completeness property, supported by
Lemmas 3, 4, and 5.

LEMMA 3. If a non-faulty replica concludes an epoch in
the iteration iterh, all non-faulty replicas will also conclude
that epoch in iterh.

LEMMA 4. If a non-faulty replica pi does not conclude the
epoch in or before the iteration iterh, pi will receive either
an opt-block Bh+1 or an output from DBAh.

LEMMA 5. A replica will commit at least two blocks in an
epoch, as long as all non-faulty replicas enter this epoch.

THEOREM 6 (COMPLETENESS). For each index k (k ≥ 1),
every non-faulty replica pi eventually has Ci[k] ̸= ⊥.

Proof: If there is an epoch where pi does not conclude
the epoch in or before the iteration iterk+1, according to
Lemma 4, pi will receive either Bj+1 or Oj for each j (where
1 ≤ j ≤ k + 1). Besides, Oj .b must be 0. When either
Bj+1 is received or Oj is received, an opt-block Bj−1 will
be committed. Therefore, pi will commit at least k opt-blocks
in this epoch, establishing this theorem.

Otherwise, according to Lemma 3, when a replica con-
cludes an epoch, all non-faulty replicas will successfully
conclude the current epoch and advance to the next epoch.
Besides, based on Lemma 5, a replica can commit at least two
blocks in an epoch as long as all non-faulty replicas enter this
epoch. Therefore, after at most ⌈k/2⌉ epochs, pi will commit
at least k blocks, implying Ci[k] ̸= ⊥.

B. Consistency analysis

The consistency property is outlined in Theorem 9, whose
proof relies on Lemmas 7 and 8.

LEMMA 7. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, these two blocks must
be identical.

LEMMA 8. If two non-faulty replicas conclude the same
epoch, they must commit the same number of blocks within
that epoch.

THEOREM 9 (CONSISTENCY). For two non-faulty replicas
pi and pj , if Ci[k] ̸= ⊥ and Cj [k] ̸= ⊥, then Ci[k] = Cj [k].

Proof: Lemma 8 states that the epoch in which pi commits
Ci[k] must be the same as the epoch where pj commits Cj [k],
and we denote this epoch as e. Furthermore, within epoch
e, the specific height at which pi commits Ci[k] must be the
same as the height where pj commits Cj [k], denoted as h. In
other words, pi and pj commit Ci[k] and Cj [k] at the same
height within the same epoch. According to Lemma 7, it is
also established that Ci[k] and Cj [k] must be identical.

C. Liveness analysis

We say the protocol has concluded an epoch if any non-
faulty replica concludes it. According to Lemma 3, if a non-
faulty replica concludes an epoch, then all non-faulty replicas
will also conclude it within the same iteration. In other words,
non-faulty replicas agree on the number of iterations in each
epoch. We say a transaction is committed if it is included in
a committed block.

As described in Section II-B, each replica’s buffer orga-
nizes pending transactions in the order of their reception times.
Therefore, a unique index k, starting from 1, is assigned to
each transaction within bufi. Each time a block is committed,
any transaction included in this block will be removed from
bufi, and the indices of remaining transactions are adjusted
downwards. Recall that in Section II-B, the maximum trans-
action count in a block is denoted as c. For a given transaction
tx in replica pi’s buffer, the committing of pi’s newly proposed
block results in one of two outcomes for tx: if tx is included
within the block, it becomes committed; otherwise, the index
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of tx decreases by c. To unify the two cases, we define that
when tx’s index becomes 0 or negative, tx is committed.

Consider the moment when tx enters the buffer of every
non-faulty replica and suppose tx is placed at index ki in
replica pi’s buffer. Whenever an index ki falls to 0 or below,
tx is committed by pi. Let K represent the sum of tx’s
indices in the buffers of all non-faulty replicas, expressed as
K =

∑
pi∈H ki, where H is the set of non-faulty replicas.

It follows naturally that each time a block from a non-faulty
replica is committed, K decreases.

THEOREM 10 (LIVENESS). If a transaction tx is added to
every non-faulty replica’s buffer, every non-faulty replica will
eventually commit a block containing tx.

Proof: Let T0 denote the moment when tx is added
to every non-faulty replica’s buffer. Let u = ⌈K/c⌉. Two
situations unfold:

Situation 1: At least u non-faulty opt-blocks proposed
after T0 are committed within an epoch. We assume by
contradiction that tx is not committed after u non-faulty opt-
blocks being committed. Each time a non-faulty opt-block is
committed, K will be reduced by c. Therefore, after u non-
faulty opt-blocks being committed, K will be reduced by c ·u.
Since u = ⌈K/c⌉, then K − u · c ≤ 0. As K represents the
sum of all indices of tx in non-faulty replicas’ buffers, at least
one index is negative or 0, indicating that tx is committed and
leading to a contradiction.

Situation 2: Less than u non-faulty opt-blocks proposed
after T0 are committed within each epoch. In this situation,
each epoch is concluded after some opt-blocks and two pess-
blocks are committed. DBA’s quality property ensures that the
probability of the outputted pess-block being proposed by a
non-faulty replica is over 1/2. Similar to Situation 1, each
time a non-faulty pess-block is committed, K will be reduced
by c. As the epochs advance, the probability that at least u
non-faulty pess-blocks being committed will approach 1. In
other words, K will keep decreasing and eventually become
negative or 0. Thus, tx will eventually be committed.

To sum up, the liveness property is established.

D. Efficiency analysis

Recall that δ denotes the actual network delay, while c
and L represent the maximum transaction count and block
size of a block, respectively. Besides, we assume the size of
shares and signatures to all have length κ. Our analysis focuses
on the efficiency of Ipotane when employing sMVBA [31]
to construct AlgDBA. Inspired by AMS-VABA [4] and two-
chain VABA [26], we introduce two improvements to sMVBA.
Firstly, we reduce its view-change phase from two commu-
nication rounds to just one, in a manner akin to the AMS-
VABA protocol [4], effectively reducing its expected worst-
case latency to 10.5 communication rounds. Secondly, we
require each replica to broadcast a block within the second
Provable Broadcast (PB) instance. For clarity, we refer to
these blocks as PB2-blocks. Accordingly, original pess-blocks
proposed in the first PB instance are termed PB1-blocks.
When a replica commits the PB1-block proposed by the view
leader (distinct from the leader of Ipotane’s optimistic path),
it must have received a QC for this leader’s PB2-block. The

replica will include this QC in its PB1-block in the subsequent
sMVBA/AlgDBA instance, leading to a chain of blocks across
sMVBA/AlgDBA instances, similar to two-chain VABA [26].
This way, committing a PB1-block in an AlgDBA instance will
also commit a PB2-block from the preceding AlgDBA, thereby
improving DBA’s throughput.

1) Favorable situation: In a favorable situation, blocks are
continuously committed through the optimistic path. Every 2δ
interval, a new opt-block is produced, and a block from two
heights prior is committed. This process results in a throughput
of c/(2δ) and a latency of 5δ. Even in this favorable situation,
both two paths are executed. On the optimistic path, each
replica will send a signature share to leaders and broadcast
its received opt-block, leading to a communication overhead
of O(n2L+nκ). The pessimistic path consists of consecutive
AlgDBA instances, leading to a communication overhead of
O(n2L + n2κ). Therefore, the total communication overhead
in a favorable situation is O(n2L+ n2κ).

2) Unfavorable situation: In an unfavorable situation, only
two AlgDBA instances produce outputs per epoch. For sim-
plicity, we refer to them as AlgDBA1 and AlgDBA2, re-
spectively. As AlgDBA is constructed as an extension of
sMVBA with an additional prepare phase, its expected worst-
case latency is 11.5 rounds. At the end of an epoch, three
blocks are committed: two PB1-blocks generated in AlgDBA1
and AlgDBA2, respectively, and one PB2-block generated
in AlgDBA1. Consequently, the throughput is calculated as
3c/(11.5δ · 2) = 3c/(23δ). The latency for the first PB1-
block is 23δ, corresponding to the duration of two AlgDBA
instances. The PB2-block, proposed two rounds later than the
first PB1-block, has a latency of 21δ. The second PB1-block,
committed immediately upon the output of AlgDBA2, has a
latency of 11.5δ. Therefore, the average latency across these
blocks is (23δ + 21δ + 11.5δ)/3, which equals 18.5δ. As
for the communication overhead, the optimistic path in the
unfavorable situation fails to make progress. Therefore, its
communication overhead is that of the pessimistic path, which
is also O(n2L+ n2κ).

VI. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of the
Ipotane prototype and conduct a comparison with other pro-
tocols. Our chosen baselines include Abraxas and ParBFT,
both of which employ the parallel-path paradigm similar to
Ipotane. We include Ditto as another baseline that represents
the sequential-path paradigm. In favorable situations, Ditto’s
performance matches that of a partially-synchronous protocol.
We also include two-chain VABA, a purely asynchronous pro-
tocol, as a baseline for the evaluation of unfavorable situations.

A. Implementation and experimental setup

1) Implementation: We directly adopt the available open-
source codes of our baselines ParBFT3 and Abraxas4. Two-
chain VABA and Ditto share the same repository5. All these
implementations are built on the same code framework in Rust,
which typically includes a mempool to decouple transaction

3https://github.com/ac-dcz/parbft-parbft1-rust
4https://github.com/sochsenreither/abraxas
5https://github.com/danielxiangzl/Ditto
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Fig. 6: Latency vs. throughput.

transmission from consensus messages. Through the mempool,
each replica continuously packages a batch of transactions
into a payload, which is then broadcast to other replicas. In
the consensus message, a block contains only hashes of these
payloads, effectively reducing the size of consensus messages
and enhancing performance.

To ensure a fair comparison, we implement Ipotane using
the same framework as the baselines. The VABA protocol em-
ployed in DBA is instantiated with sMVBA [31]. To improve
performance, we introduce minor modifications to the sMVBA
protocol. These include adding a block in each PB instance and
chaining blocks across different sMVBA instances, a structure
adopted by two-chain VABA [26]. Additionally, the view-
change phase has been streamlined to a single round following
the AMS-VABA protocol [4].

2) Experimental setup: For all protocols, we set the size of
a transaction to 512 bytes. The size of a payload and the queue
capacity in the mempool are configured to be 500 kilobytes
and 100,000, respectively. The maximum number of payloads
contained in a block is limited to 32, and the minimum interval
to propose a block is set to 100 milliseconds. In Ditto, the
timing parameter ∆ is configured to 5 seconds, while the
lookback parameter λ in Abraxas is fixed at 20.

Except for two-chain VABA, each protocol employs prede-
termined leaders for optimistic paths. Depending on how often
leaders crash, we consider following three scenarios, akin to
those defined in Abraxas. Each scenario is characterized by
the parameter ρ, signifying the probability of leader crashes.

1) ρ = 0: This implies that leaders operate without any
crashes. In this scenario, all protocols, except two-chain
VABA, are expected to commit blocks through the opti-
mistic paths.

2) ρ = 100%: In this scenario, leaders always crash, and all
protocols commit blocks through the pessimistic paths.

3) ρ = 10% or ρ = 20%: Each leader has a 10% or 20%
probability of crashing in this scenario, representing an
intermediate point between the previous two scenarios.
Optimistic protocols commit blocks through their opti-
mistic paths intermittently.

Our experiments are conducted on Amazon Web Service,
where each replica is deployed as an m5d.2xlarge instance.
Each instance is equipped with 8 vCPUs and 32GiB memory,
running Ubuntu 20.04 as the operating system. Replicas are

connected through a network link with up to 10 Gbps band-
width. These replicas are spread in a geographically distributed
manner, uniformly across five regions: N.Virginia (us-east-1),
Stockholm (eu-north-1), Tokyo (ap-northeast-1), Sydney (ap-
southeast-2), and N.California (us-west-1).

3) Performance metrics: Our evaluation primarily focuses
on two key metrics: end-to-end latency and throughput. End-
to-end latency is assessed as the average time taken for a
transaction to be committed, measured from the moment it
is submitted by the client to the moment it is committed.
Throughput is calculated as the number of committed transac-
tions per second. Each experiment is conducted over a duration
of 5 minutes to report a stable performance. We repeat each
experiment three times and utilize the error bars or averages
to mitigate experimental errors.

B. Trade-off between throughput and latency

In all experiments in this section, we set the number of
replicas to 16. By progressively increasing the rate at which
clients submit transactions, the system eventually becomes sat-
urated. Plotting each pair of latency and throughput produces
a figure that simultaneously demonstrates the latency under
unsaturated conditions and the peak throughput under saturated
conditions. Experimental results are illustrated in Fig. 6, with
throughput and latency on the x-axis and y-axis, respectively.
Each data point in the figure is marked with an error bar,
representing both the average and standard deviation of the
experimental results.

As shown in Fig. 6a, when the optimistic path always
operates well, Ipotane attains low latency and high throughput,
comparable to Ditto and ParBFT.6 Notably, Ditto matches the
performance of a partially-synchronous protocol, as it adopts
the sequential-path paradigm and only runs the optimistic
path in this scenario. Thus, in favorable situations, Ipotane’s
performance is on par with a partially-synchronous protocol.

At the other end of the spectrum, when the optimistic
path always fails, as shown in Fig. 6d, Ipotane still maintains
good performance, slightly inferior to the purely asynchronous
protocol (two-chain VABA) but significantly better than Ditto
or ParBFT. In this scenario, Ditto takes a considerable amount
of time to switch between the failed optimistic path and the
pessimistic path, resulting in poor performance. While ParBFT

6Abraxas reports lower performance than expected, possibly due to its
implementation being based on an earlier version of Ditto.
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Fig. 7: Throughput over time.

runs two paths concurrently, it requires additional ABA in-
stances to commit pess-blocks. These ABA instances do not
generate new blocks by themselves, leading to idle periods and
reduced performance. In contrast, Ipotane commits pess-blocks
by consecutively running DBA instances, which can promptly
detect the optimistic path’s failure without introducing extra
consensus instances, thereby delivering superior performance.

In the intermediate scenarios, a protocol with an optimistic
path intermittently commits blocks through this path, leading
to a blended result between the scenarios of ρ = 0 and
ρ = 100%. Regarding peak throughput, Ipotane consistently
outperforms other protocols as illustrated in Fig. 6b and
Fig. 6c. In terms of latency, Ipotaneand two-chain VABA
consistently demonstrate the lowest among these protocols.

To sum up, across all scenarios, Ipotane consistently attains
the (near-)best performance among all protocols. Specifically,
it achieves performance on par with partially-synchronous
protocols under favorable situations and on par with purely
asynchronous protocols under unfavorable situations.

C. Throughput stability

In this section, we evaluate the throughput stability of
protocols. We continue to use 16 replicas. Our experiments are
specifically conducted at each system’s saturation point, where
a system achieves its peak throughput without significant
deterioration in latency. At this point, the system can reliably
sustain high throughput.

Starting from the moment the system reaches the satura-
tion point, we record the accumulated number of committed
transactions over time. More precisely, each time a new block
is committed, we record the current time and calculate the
number of committed transactions by counting in transactions
included in this block. We also explore four scenarios with
varying values of ρ, whose results are depicted in Fig. 7.

In the ρ = 0 scenario, all protocols exhibit stable through-
put, as evidenced by the smooth curves in Fig. 7a. This
is expected, as the two-chain VABA protocol continuously
commits blocks through the two-chain instances7, while other
protocols steadily commit blocks through the optimistic path.
On the other hand, in the ρ = 100% scenario, two-chain
VABA, ParBFT, and Ipotane can maintain stable throughput, as
shown in Fig. 7d. However, Ditto and Abraxas display unstable
throughput, as indicated by the jagged curves. This instability

7A two-chain instance refers to two consecutive blocks plus a leader
nomination [26].

arises from the extended periods required for Ditto to complete
the path switch and for Abraxas to wait for a minimum of λ
pess-blocks, during which no blocks are being committed.

In the ρ = 10% or ρ = 20% scenario, all protocols
except VABA exhibit less stable throughput as they alternate
between committing blocks through the optimistic path and the
pessimistic path. Nevertheless, Ipotane continues to showcase
superior stability than Abraxas and Ditto.

D. Latency stability

Latency stability holds significant importance for upper-
layer applications, as unstable latency can result in poor user
experience. We evaluate latency stability by recording latency
of each transaction. These experiments are also conducted with
16 replicas and at each system’s saturation point.

Experimental results are depicted in Fig. 8. In the ρ = 0
scenario (Fig. 8a), all protocols exhibit stable latency. In the
ρ = 100% scenario (Fig. 8d), Ipotane maintains relatively
stable latency by committing pess-blocks through successive
DBA instances. While Ipotane’s latency deviation is slightly
larger than that of two-chain VABA, it is more stable than
other protocols. Ipotane’s slightly larger deviation than VABA
can be attributed to the fact that, within an epoch, pess-blocks
generated in the second-to-last DBA instance are not commit-
ted until the final DBA instance outputs, resulting in higher
latency for these pess-blocks. In contrast, Abraxas displays
significant latency fluctuations due to its lookback mechanism,
where blocks generated in the initial two-chain instance must
wait for the production of at least λ subsequent blocks. ParBFT
and Ditto both exhibit notable latency instability, because
their respective ABA instances and path-switch mechanisms
introduce considerable latency variations.

In the ρ = 10% (Fig. 8b) and ρ = 20% (Fig. 8c)
scenarios, Ipotane and VABA still maintain stable latency, with
fluctuation significantly lower than other protocols.

E. Scalability evaluation

We conducted a comprehensive evaluation of scalability
across various protocols, analyzing their throughput under
varying numbers of replicas: 7 replicas, 16 replicas, and 40
replicas. Throughput measurements were specifically taken at
the saturation point. Additionally, experiments were carried out
with different probabilities of leader replicas, and the results
are illustrated in Fig. 9.
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Fig. 8: Latency over the transaction sequence numbers.
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Fig. 9: Throughput vs. system size.

As depicted in Fig. 9a, Ipotane, alongside ParBFT, achieves
a high throughput when leaders on the optimistic path keep
performing well. Notably, in the case of 40 replicas, they ex-
hibit a slightly lower throughput compared to Ditto, potentially
attributed to their elevated communication overhead O(n2),
stemming from the parallel pessimistic path. In scenarios
where the optimistic path fails to function, as illustrated in
Fig. 9d, Ipotane consistently maintains high throughput com-
parable to two-chain VABA, across different replica counts.
When leaders on the optimistic path fail with a probability of
10% or 20%, Ipotane outperforms all other protocols under
varying system sizes, as evidenced by Fig. 9b or Fig. 9c. In
summary, Ipotane consistently demonstrates excellent scalabil-
ity across diverse probabilities of leader failures.

VII. RELATED WORK

We summarize asynchronous BFT protocols in this section
and defer the discussion of (partially-)synchronous protocols
to Section B in the Appendix.

The simplest form of asynchronous BFT is ABA, which
reaches an agreement on binary values [48], [51], [43], [1].
VABA and MVBA instead focuses on agreeing on arbitrary
values [13], [2], [41], [25]. Building upon ABA or VABA,
Asynchronous Common Subset (ACS) and SMR can be con-
structed [42], [32], [55], [20].

Despite efforts to enhance the performance of asyn-
chronous protocols, a performance gap persists when compared
to partially-synchronous protocols. To address this gap, a
series of works introduce an optimistic path to asynchronous
protocols, categorized into two paradigms: sequential-path

and parallel-path. The sequential-path paradigm executes the
optimistic and pessimistic path in sequence [5], necessitating
path switches [26], [40]. These switches delay the launch of
the pessimistic path and affect performance in unfavorable
situations. To overcome this, the parallel-path paradigm, exem-
plified by Abraxas [10] and ParBFT [16], launches two paths
simultaneously, avoiding the need for path switches. However,
while Abraxas achieves high throughput in all situations, it
suffers from high latency under unfavorable situations. In con-
trast, ParBFT consistently delivers low latency but suffers from
reduced throughput in unfavorable situations. Ipotane proposed
in this paper achieves both high throughput and low latency
in both favorable and unfavorable situations.

Another class of protocols [35], [49], [17] leverages a Di-
rected Acyclic Graph (DAG)-based approach. These protocols,
however, inherently suffer from O(n2L+n3κ) communication
overhead, rendering them less scalable compared to many pre-
viously discussed protocols. Besides, these approaches gener-
ally depend on multiple rounds of Reliable Broadcast (RBC) to
achieve consensus, resulting in high latency. For instance, DA-
GRider and Tusk require latencies of 12δ and 9δ, respectively,
even under favorable situations. BullShark [50], a noteworthy
DAG-based protocol, also introduces an optimistic path to
enhance performance. In favorable situations, it requires two
sequential RBCs to commit, incurring a latency of 6δ, slightly
larger than the 5δ offered by a partially-synchronous protocol
(e.g., two-chain HotStuff) or our Ipotane. However, it has a
complex process of transitioning to the pessimistic path in
unfavorable situations, resulting in an expected latency of 30δ
due to 10 sequential RBCs. This is significantly higher than
the 10.5δ typical of purely asynchronous protocols (e.g., two-
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chain VABA) or 18.5δ offered by Ipotane.

VIII. CONCLUSION

Existing dual-path asynchronous BFT protocols exhibit
either low throughput or high latency under unfavorable situ-
ations. To address this, we propose a novel protocol named
Ipotane, which executes consecutive DBA instances on the
pessimistic path. DBA operates as a fusion of biased ABA and
VABA, which can be implemented through low-cost modifica-
tions to existing VABA protocols. On one hand, DBA promptly
detects optimistic path failures, ensuring low latency under
unfavorable situations. On the other hand, Ipotane leverages
DBA instances to continuously produce blocks without idle
periods, thereby achieving high throughput in unfavorable sit-
uations. In summary, Ipotane attains performance on par with
partially-synchronous protocols under favorable situations and
comparable to purely asynchronous protocols in unfavorable
situations, as demonstrated by our experiments.
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APPENDIX

A. Proof of Lemmas in Section V

LEMMA 1. Every non-faulty replica will receive either t+1
values of 0 or n− t values of 1 during the prepare phase.

Proof: This is established through two cases.

Case 1: At least one non-faulty replica has the binary
input of 0. In this case, each non-faulty replica will receive
a message of (PREP, 0, ∗). According to Lines 6-8 in Algo-
rithm 1, each non-faulty replica will also broadcast a message
with 0 if it has not yet broadcast this message. Therefore,
each non-faulty replica will eventually receive t+ 1 values of
0 during the prepare phase.

Case 2: Every non-faulty replica has a binary input
of 1. Here, each non-faulty replica broadcasts a message of
(PREP, 1, ∗), leading to each receiving n− t values of 1.

LEMMA 3. If a non-faulty replica concludes an epoch in
the iteration iterh, all non-faulty replicas will also conclude
that epoch in iterh.

Proof: If a non-faulty replica concludes an epoch in iterh,
it implies that DBAh outputs 1. According to DBA’s biased
validity property, at least n− 2t non-faulty replicas must have
inputted 1 to DBAh. Consequently, as per the rules of Case 2.1,
these n−2t non-faulty replicas must have ceased voting for the
opt-block Bh. This means no valid QCh can be generated, and
no valid Bh+1 can be constructed, effectively stalling progress
on the optimistic path. On the other hand, a replica will input to
DBAh+1 only after DBAh outputs. Based on DBA’s agreement
property, every non-faulty replica will output 1 from DBAh and
consequently conclude the epoch in iterh directly.

LEMMA 4. If a non-faulty replica pi does not conclude the
epoch in or before the iteration iterh, pi will receive either
an opt-block Bh+1 or an output from DBAh.

Proof: According to Lemma 3, if a non-faulty replica does
not conclude the epoch in or before the iteration iterh, no non-
faulty replica concludes that epoch in or before iterh either. In
other words, all non-faulty replicas will advance to iterh+1. If
any non-faulty replica pj receives an opt-block Bh+1 in iterh,
all non-faulty replicas, including pi, will receive Bh+1 since
pj will broadcast this block. Next, we consider the situation
where no non-faulty replica receives Bh+1.

According to Case 1 described in Section IV-C, no non-
faulty replica will stop participating in the DBAh−1 instance.
Therefore, each non-faulty replica can output from DBAh−1.
Since no non-faulty replica concludes this epoch in or before
the iteration iterh, every replica will participate in DBAh

by inputting the binary value 1. Since no non-faulty replica
receives Bh+1, the opt-block Bh+2 cannot be generated and
non-faulty replicas cannot receive Bh+2. In a similar way, no
non-faulty replica will stop participating in the DBAh instance
and each one can eventually receive an output from DBAh.

LEMMA 5. A replica will commit at least two blocks in an
epoch, as long as all non-faulty replicas enter this epoch.
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Proof: If a replica does not conclude the epoch in or
before the iteration iter3, based on Lemma 4, it will either
receive an opt-block Bk+1 or an output Ok from DBAk for
each k (1 ≤ k ≤ 3). Besides, if it receives an output Ok, we
must have Ok.b = 0. For k = 3, if the replica receives B3, it
will commit B1 based on the two-chain mechanism; otherwise,
namely, if the replica receives O2, it will also commit B1 based
on the rule of Case 2.1. Thus, the replica will commit the opt-
block B1. Similarly, it will commit the opt-block B2. In other
words, at least two opt-blocks are committed in this case, thus
establishing the lemma.

Otherwise, if a non-faulty replica concludes the epoch in or
before iter3, according to Lemma 3, every non-faulty replica
will conclude the epoch in or before iter3. Before a replica
concludes the epoch, it will commit two pess-blocks, which
also establishes the lemma.

LEMMA 7.1. Within an epoch, if a non-faulty replica
commits an opt-block at height h and another non-faulty
replica output b from DBAh+1, then b must be 0.

Proof: We assume these two non-faulty replicas to be pi
and pj where pi commits an opt-block Bh and pj receives
b from DBAh+1. Bh must be committed through the rules of
either Case 1 or Case 2.1, as outlined in Section IV-C. If Bh is
committed through Case 1, at least n−t replicas, among which
n−2t are non-faulty, must have voted for Bh+1. This implies
that at least n−2t non-faulty replicas would use 0 as the binary
input to DBAh+1. Given n ≥ 3t+1, we have n− 2t ≥ t+1.
Therefore, by the biased validity property of DBA, DBAh+1

should output a binary value of 0. If Bh is committed through
Case 2.1, based on DBA’s agreement property, pj would also
receive a binary output of 0 from DBAh+1.

LEMMA 7.2. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, then either both two
blocks are opt-blocks, or both are pess-blocks.

Proof: We prove this lemma via contradiction. Without
loss of generality, assume two non-faulty replicas pi and
pj commit opt-block Bh and pess-block Ch, respectively.
Based on Lemma 7.1, pj will receive 0 from DBAh+1 if it
receives an output at all. According to the protocol described
in Section IV-C, pj must commit a pess-block Ch−1 or Ch+1.
We consider the following two situations:

Situation 1: pj commits Ch and Ch+1. According to
rules of Case 2.2, pj must receive a binary output of 1
from DBAh+1, which contradicts the earlier conclusion that
DBAh+1 would output 0.

Situation 2: pj commits Ch−1 and Ch. Per the rules of
Case 2.2 described in Section IV-C, pj must receive a binary
output of 1 from DBAh. With DBA’s biased validity property,
at least n − 2t non-faulty replicas must have inputted 1 to
DBAh. Consequently, according to the rules of Case 2.1, these
replicas would stop voting for the opt-block Bh, preventing
the generation of a valid QCh and construction of Bh+1. This
makes it impossible for pi to commit Bh through the rules
of Case 1. Additionally, pj will conclude the current epoch in
the iteration iterh. By Lemma 3, all non-faulty replicas will
conclude the epoch in iterh without inputting to DBAh+1,
making it impossible for pi to commit Bh through rules of

Case 2.1. This contradicts the assumption of pi committing an
opt-block Bh.

Therefore, it is impossible for one non-faulty replica to
commit an opt-block and the other to commit a pess-block at
the same height, establishing the lemma.

LEMMA 7. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, these two blocks must
be identical.

Proof: Per Lemma 7.2, either both two blocks are opt-
blocks or both are pess-blocks. If they are pess-blocks, then
according to DBA’s agreement property, these two blocks must
be identical. Now, we consider the situation where both are
opt-blocks.

As described in Section IV-C, an opt-block Bh is commit-
ted through the rules of Case 1 or Case 2.1. If Bh is committed
through the rules of Case 1, a QC for Bh must be generated.
If Bh is committed through rules of Case 2.1, DBAh+1 must
produce an output Oh+1 where Oh+1.b = 0 and Oh+1.d = Bh.
By DBA’s proof validity property, a replica must have input a
valid tuple ⟨0, σ, ∗⟩ to DBAh+1, where σ represents the QC
for Bh. In other words, the QC for Bh is also generated. To
sum up, when an opt-block is committed, it must be certified
by a QC.

Consider the situation where two committed blocks are opt-
blocks, denoted as Bh and B′

h, which are certified by QCh

and QC ′
h, respectively. By a standard quorum intersection

argument, the blocks certified by QC and QC ′ must also be
identical, namely Bh = B′

h.

LEMMA 8. If two non-faulty replicas conclude the same
epoch, they must commit the same number of blocks within
that epoch.

Proof: Based on Lemma 3, these two replicas must con-
clude the epoch in the same iteration, which we denote as iterl.
According to Algorithm 3, both replicas must receive 1 from
DBAl. Since every non-faulty replica inputs 0 to DBA1 (as
stated in Line 6 of Algorithm 3), the biased-validity property
ensures that DBA1 will output 0. Consequently, the value of l
must be equal to or greater than 2. Additionally, both replicas
must have received 0 from the preceding DBA instance, which
is iterl−1.

At any height k, where 1 ≤ k ≤ l−2, both replicas commit
an opt-block Bk. At heights l − 1 and l, they commit a pess-
block, Cl−1 or Cl, respectively. Therefore, these two replicas
commit the same number of blocks within that epoch.

B. Additional Related Work

In this section, we summarize the additional related works
except in Section VII, specifically including the synchronous
BFT consensus and partially-synchronous BFT consensus.

1) Synchronous BFT consensus: Synchronous BFT con-
sensus protocols are designed under the network assumption
that each message can be delivered within a predefined period,
denoted as ∆, after its transmission. Representatives in this
category encompass many early works [46], [37], [18], [22]
as well as some recent studies [33], [3]. However, protocols
designed for synchronous networks encounter a challenge in
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setting the right value for ∆. If ∆ is set too small, the
synchronous assumption becomes fragile. Conversely, if ∆
is set too large, the resulting protocol will be slow, as its
performance must directly depend on ∆ [3].

2) Partially-synchronous BFT consensus: Given the FLP
impossibility [23], which states that deterministic fault-tolerant
asynchronous consensus is impossible, Dwork et al. propose an
intermediate network assumption called partial synchrony [21].
The partial synchrony model assumes the network to be syn-
chronous after an unknown Global Stabilization Time (GST),
which has been the mainstream model for practical systems
for a long time.

One of the most notable works adopting the partially-
synchronous assumption is PBFT [14]. Building on PBFT,
subsequent works aim to reduce consensus latency by intro-
ducing a fast committing path [36], [39], [30], [15]. Drawing
inspiration from the flourishing blockchain technology [44],
structures like blocks and chains are incorporated into BFT

consensus to pipeline consecutive consensus instances, thereby
enhancing throughput. Example chained BFT consensus in-
clude Tendermint [11], Casper [12], and HotStuff [54]. Some
works [45], [28] address liveness issues in chained-BFT where
faulty leaders can prevent progress. Motorway constructs a data
dissemination layer to improve throughput during periods of
bad networks [27].

Despite its popularity, partially-synchronous protocols have
raised concerns about their robustness [42], [19]. An adversary
with network manipulation capacities can compromise the
liveness of a partially-synchronous protocol. Consequently, a
recent line of work revisits the asynchronous network [32],
[55], [20].

Ling: It would best if we can squeeze Appendix A and
C back to the main body.Xiaohai: Have done this. Once the
colored comments are removed, the main body will approxi-
mately meet the page limit of 13 pages.
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